27,265 research outputs found

    Hawking radiation in a dd-dimensional static spherically-symmetric black Hole surrounded by quintessence

    Full text link
    We present a solution of Einstein equations with quintessential matter surrounding a dd-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole and find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.Comment: 16 pages, Accepted for publication in Phys. Rev.

    Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne

    Full text link
    The four-dimensional Dirac-Schr\"odinger equation satisfied by quark-antiquark bound states is derived from Quantum Chromodynamics. Different from the Bethe-Salpeter equation, the equation derived is a kind of first-order differential equations of Schr\"odinger-type in the position space. Especially, the interaction kernel in the equation is given by two different closed expressions. One expression which contains only a few types of Green's functions is derived with the aid of the equations of motion satisfied by some kinds of Green's functions. Another expression which is represented in terms of the quark, antiquark and gluon propagators and some kinds of proper vertices is derived by means of the technique of irreducible decomposition of Green's functions. The kernel derived not only can easily be calculated by the perturbation method, but also provides a suitable basis for nonperturbative investigations. Furthermore, it is shown that the four-dimensinal Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous three-dimensional forms in the equal-time Lorentz frame and the Dirac-Schr\"odinger equation can be reduced to an equivalent Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To show the applicability of the closed expressions derived and to demonstrate the equivalence between the two different expressions of the kernel, the t-channel and s-channel one gluon exchange kernels are chosen as an example to show how they are derived from the closed expressions. In addition, the connection of the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed

    Strange meson-nucleon states in the quark potential model

    Get PDF
    The quark potential model and resonating group method are used to investigate the KˉN\bar{K}N bound states and/or resonances. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the confining potential with incorporating the QCD renormalization correction and the spin-orbital suppression effect in it. It was shown in our previous work that by considering the color octet contribution, use of this model to investigate the KNKN low energy elastic scattering leads to the results which are in pretty good agreement with the experimental data. In this paper, the same model and method are employed to calculate the masses of the KˉN\bar{K}N bound systems. For this purpose, the resonating group equation is transformed into a standard Schr\"odinger equation in which a nonlocal effective KˉN\bar{K}N interaction potential is included. Solving the Schr\"odinger equation by the variational method, we are able to reproduce the masses of some currently concerned KˉN\bar{K}N states and get a view that these states possibly exist as KˉN\bar{K}N molecular states. For the KNKN system, the same calculation gives no support to the existence of the resonance Θ+(1540)\Theta ^{+}(1540) which was announced recently.Comment: 15 pages, 4 figure

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Detecting Full N-Particle Entanglement in Arbitrarily High-Dimensional Systems with Bell-Type Inequality

    Full text link
    We derive a set of Bell-type inequalities for arbitrarily high-dimensional systems, based on the assumption of partial separability in the hybrid local-nonlocal hidden variable model. Partially entangled states would not violate the inequalities, and thus upon violation, these Bell-type inequalities are sufficient conditions to detect the full NN-particle entanglement and validity of the hybrid local-nonlocal hidden variable description.Comment: 6 page
    corecore