768 research outputs found

    The Dynamics of Public Opinion in Complex Networks

    Get PDF
    This paper studies the problem of public opinion formation and concentrates on the interplays among three factors: individual attributes, environmental influences and information flow. We present a simple model to analyze the dynamics of four types of networks. Our simulations suggest that regular communities establish not only local consensus, but also global diversity in public opinions. However, when small world networks, random networks, or scale-free networks model social relationships, the results are sensitive to the elasticity coefficient of environmental influences and the average connectivity of the type of network. For example, a community with a higher average connectivity has a higher probability of consensus. Yet, it is misleading to predict results merely based on the characteristic path length of networks. In the process of changing environmental influences and average connectivity, sensitive areas are discovered in the system. By sensitive areas we mean that interior randomness emerges and we cannot predict unequivocally how many opinions will remain upon reaching equilibrium. We also investigate the role of authoritative individuals in information control. While enhancing average connectivity facilitates the diffusion of the authoritative opinion, it makes individuals subject to disturbance from non-authorities as well. Thus, a moderate average connectivity may be preferable because then the public will most likely form an opinion that is parallel with the authoritative one. In a community with a scale-free structure, the influence of authoritative individuals keeps constant with the change of the average connectivity. Provided that the influence of individuals is proportional to the number of their acquaintances, the smallest percentage of authorities is required for a controlled consensus in a scale free network. This study shows that the dynamics of public opinion varies from community to community due to the different degree of impressionability of people and the distinct social network structure of the community.Public Opinion, Complex Network, Consensus, Agent-Based Model

    Context-aware Adversarial Attack on Named Entity Recognition

    Full text link
    In recent years, large pre-trained language models (PLMs) have achieved remarkable performance on many natural language processing benchmarks. Despite their success, prior studies have shown that PLMs are vulnerable to attacks from adversarial examples. In this work, we focus on the named entity recognition task and study context-aware adversarial attack methods to examine the model's robustness. Specifically, we propose perturbing the most informative words for recognizing entities to create adversarial examples and investigate different candidate replacement methods to generate natural and plausible adversarial examples. Experiments and analyses show that our methods are more effective in deceiving the model into making wrong predictions than strong baselines

    A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context

    Full text link
    In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset.Comment: Accepted to NAACL SWR 202

    The Tragedy of Corruption

    Full text link
    We investigate corruption as a social dilemma by means of a bribery game in which a risk of collective sanction of the public officials is introduced when the number of officials accepting a bribe from firms reaches a certain threshold. We show that, despite the social risk, the pursuit of individual interest prevails and leads to the elimination of honest officials over time. Reducing the size of the groups while increasing the probability of collective sanction diminishes the officials' corruptibility but is not sufficient to eliminate the Tragedy of corruption that leads both firms and officials to earn less than in the absence of corruption

    Energy-Efficient Wireless Communications with Distributed Reconfigurable Intelligent Surfaces

    Get PDF
    This paper investigates the problem of resource allocation for a wireless communication network with distributed reconfigurable intelligent surfaces (RISs). In this network, multiple RISs are spatially distributed to serve wireless users and the energy efficiency of the network is maximized by dynamically controlling the on-off status of each RIS as well as optimizing the reflection coefficients matrix of the RISs. This problem is posed as a joint optimization problem of transmit beamforming and RIS control, whose goal is to maximize the energy efficiency under minimum rate constraints of the users. To solve this problem, two iterative algorithms are proposed for the single-user case and multi-user case. For the single-user case, the phase optimization problem is solved by using a successive convex approximation method, which admits a closed-form solution at each step. Moreover, the optimal RIS on-off status is obtained by using the dual method. For the multi-user case, a low-complexity greedy searching method is proposed to solve the RIS on-off optimization problem. Simulation results show that the proposed scheme achieves up to 33\% and 68\% gains in terms of the energy efficiency in both single-user and multi-user cases compared to the conventional RIS scheme and amplify-and-forward relay scheme, respectively

    Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN

    Full text link
    In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications. This calls for fast and accurate estimation on the distribution of the radio resources, which is usually represented by the spatial signal power strength over the geographical environment, known as a radio map. In this paper, we present a cooperative radio map estimation (CRME) approach enabled by the generative adversarial network (GAN), called as GAN-CRME, which features fast and accurate radio map estimation without the transmitters' information. The radio map is inferred by exploiting the interaction between distributed received signal strength (RSS) measurements at mobile users and the geographical map using a deep neural network estimator, resulting in low data-acquisition cost and computational complexity. Moreover, a GAN-based learning algorithm is proposed to boost the inference capability of the deep neural network estimator by exploiting the power of generative AI. Simulation results showcase that the proposed GAN-CRME is even capable of coarse error-correction when the geographical map information is inaccurate

    Convergence Time Optimization for Federated Learning over Wireless Networks

    Full text link
    In this paper, the convergence time of federated learning (FL), when deployed over a realistic wireless network, is studied. In particular, a wireless network is considered in which wireless users transmit their local FL models (trained using their locally collected data) to a base station (BS). The BS, acting as a central controller, generates a global FL model using the received local FL models and broadcasts it back to all users. Due to the limited number of resource blocks (RBs) in a wireless network, only a subset of users can be selected to transmit their local FL model parameters to the BS at each learning step. Moreover, since each user has unique training data samples, the BS prefers to include all local user FL models to generate a converged global FL model. Hence, the FL performance and convergence time will be significantly affected by the user selection scheme. Therefore, it is necessary to design an appropriate user selection scheme that enables users of higher importance to be selected more frequently. This joint learning, wireless resource allocation, and user selection problem is formulated as an optimization problem whose goal is to minimize the FL convergence time while optimizing the FL performance. To solve this problem, a probabilistic user selection scheme is proposed such that the BS is connected to the users whose local FL models have significant effects on its global FL model with high probabilities. Given the user selection policy, the uplink RB allocation can be determined. To further reduce the FL convergence time, artificial neural networks (ANNs) are used to estimate the local FL models of the users that are not allocated any RBs for local FL model transmission at each given learning step, which enables the BS to enhance its global FL model and improve the FL convergence speed and performance.Comment: This paper has been accepted in the IEEE Transactions on Wireless Communication
    corecore