973 research outputs found

    Relativistic effect of spin and pseudospin symmetries

    Full text link
    Dirac Hamiltonian is scaled in the atomic units =m=1\hbar =m=1, which allows us to take the non-relativistic limit by setting the Compton wavelength 0% \lambda \rightarrow 0 . The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter λ\lambda. With λ\lambda transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with λ\lambda are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.Comment: 15 pages, 7 figures, accepted by PR

    AlGaInP light-emitting diodes with SACNTs as current-spreading layer

    Get PDF
    Transparent conductive current-spreading layer is important for quantum efficiency and thermal performance of light-emitting diodes (LEDs). The increasing demand for tin-doped indium oxide (ITO) caused the price to greatly increase. Super-aligned carbon nanotubes (SACNTs) and Au-coated SACNTs as current-spreading layer were applied on AlGaInP LEDs. The LEDs with Au-coated SACNTs showed good current spreading effect. The voltage bias at 20 mA dropped about 0.15 V, and the optical power increased about 10% compared with the LEDs without SACNTs

    Towards Optimizing with Large Language Models

    Full text link
    In this work, we conduct an assessment of the optimization capabilities of LLMs across various tasks and data sizes. Each of these tasks corresponds to unique optimization domains, and LLMs are required to execute these tasks with interactive prompting. That is, in each optimization step, the LLM generates new solutions from the past generated solutions with their values, and then the new solutions are evaluated and considered in the next optimization step. Additionally, we introduce three distinct metrics for a comprehensive assessment of task performance from various perspectives. These metrics offer the advantage of being applicable for evaluating LLM performance across a broad spectrum of optimization tasks and are less sensitive to variations in test samples. By applying these metrics, we observe that LLMs exhibit strong optimization capabilities when dealing with small-sized samples. However, their performance is significantly influenced by factors like data size and values, underscoring the importance of further research in the domain of optimization tasks for LLMs

    The FEM-Prediction on tensile performance of woven membrane materials under uni and Bi-axial loads

    Get PDF
    In this study, the mechanical model of the woven PVC-coated membrane materials has been built. By the FEM analysis, it was found out that when tensioned under uni-axial loads, the tensile modulus in the warp and fill direction of woven membrane materials could be predicted nicely, especially after the revision of the properties for the fiber materials. The effect of the tensile moduli of the fiber and the PVC coating materials on the modulus of the woven membrane fabrics has been discussed. It could be consulted that with the proper improvement of the modulus of the fiber materials in the fill direction, the discrepancy between the modulus of woven membrane materials in the warp and fill direction could be reduced to a certain extent. When it comes to the prediction of the modulus of the woven membrane materials under bi-axial loads, large difference could be noticed between the predicted results and the experimental results, especially in warp direction. This was due to the fact that the mechanical analysis model could only show the differences of the geometry configuration between the warp and fill directions. However, the reinforcement of membrane materials in warp direction during weaving and coating processes has been ignored

    Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms

    Get PDF
    We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with mesoscopic Rydberg atoms. A single control atom entangles a mesoscopic ensemble of target atoms through long-range interactions between Rydberg states. We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations. Besides, to address the experimental issue of Rabi frequency fluctuation (Rabi error) in Rydberg atom and ensemble, we apply the dynamical-invariant-based zero systematic-error sensitivity (ZSS) optimal control theory to the proposed scheme. Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations. We also find that the optimized scheme can also reduce errors caused by higher-order perturbation terms in deriving the Hamiltonian of the ensemble atoms. To address the experimental issue of decoherence error between the ground state and Rydberg levels in Rydberg ensemble, we introduce a dispersive coupling regime between Rydberg and ground levels, based on which the Rydberg state is adiabatically discarded. The numerical simulation demonstrate that the quantum gate is enhanced. By combining strong Rydberg atom interactions, nonadiabatic geometric quantum computation, dynamical invariant and optimal control theory together, our scheme shows a new route to construct fast and robust quantum gates with mesoscopic atomic ensembles. Our study contributes to the ongoing effort in developing quantum information processing with Rydberg atoms trapped in optical lattices or tweezer arrays
    corecore