232 research outputs found

    Corporate governance and corporate social responsibility

    Get PDF
    Corporate governance and corporate social responsibilityIn recent decades, the field of corporate governance has increasingly recognized corporate social responsibility (CSR)—the responsibility of firms to serve the interests of a broader set of stakeholders beyond their shareholders—as an important part of the corporate goal. This dissertation includes three empirical studies that are designed to advance our knowledge about the role of corporate governance in shaping a firm’s CSR practices. Findings from these studies highlight two issues regarding the intersection between corporate governance and CSR. First, in some cases, corporate governance mechanisms that should stimulate socially responsible behavior merely play a symbolic role. As demonstrated in Chapter 2, NGO directors are more prevalent among firms with lower prior year CSR performance. Yet, their presence on boards is not associated with subsequent improvements in CSR performance. Second, institutions manifest their influence on the relationship between corporate governance mechanisms and CSR over time and across space. Chapter 3 explores the time dimension, revealing that transient institutional investors and quasi-indexers have become more important in reducing executive-to-worker pay dispersion as this issue becomes more salient since the 2007-2008 financial crisis. Chapter 4 focuses on the space dimension and shows that the effectiveness of board gender diversity policies in increasing women on boards varies across countries due to the different legislative, cultural, and economic institutions

    Corporate social responsibility and NGO directors on boards

    Get PDF
    In the years 2009 to 2016, approximately 35% of Standard & Poor’s (S&P) 500 firms had at least one director with a professional background in private, not-for-profit organizations (NGO director). Yet research provides little guidance on what kind of firms are more likely to have NGO directors on their boards, neither do we know these directors’ effects on firm strategic outcomes. Our study examines the above two questions in the context of corporate social responsibility (CSR), taking the lens of resource dependence theory. Results from an analysis of all firms included in the S&P 500 index between 2010 and 2016 show that the number of NGO directors serving on a firm’s board in a certain year is positively related to the extent to which the firm displays poor CSR performance in the prior year. We also find that NGO directors on boards are not associated with immediate improvements in CSR performance; rather, their positive influence on CSR performance takes hold after 3 years. Our findings suggest that whereas NGO directors may potentially be appointed to a firm’s board for legitimization reasons, these directors are associated with enhanced CSR performance in the long term

    Isolation and characterization of a novel alphanodavirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Nodaviridae </it>is a family of non-enveloped isometric viruses with bipartite positive-sense RNA genomes. The <it>Nodaviridae </it>family consists of two genera: alpha- and beta-nodavirus. Alphanodaviruses usually infect insect cells. Some commercially available insect cell lines have been latently infected by Alphanodaviruses.</p> <p>Results</p> <p>A non-enveloped small virus of approximately 30 nm in diameter was discovered co-existing with a recombinant <it>Helicoverpa armigera </it>single nucleopolyhedrovirus (<it>Hear</it>NPV) in Hz-AM1 cells. Genome sequencing and phylogenetic assays indicate that this novel virus belongs to the genus of alphanodavirus in the family <it>Nodaviridae </it>and was designated HzNV. HzNV possesses a RNA genome that contains two segments. RNA1 is 3038 nt long and encodes a 110 kDa viral protein termed protein A. The 1404 nt long RNA2 encodes a 44 kDa protein, which exhibits a high homology with coat protein precursors of other alphanodaviruses. HzNV virions were located in the cytoplasm, in association with cytoplasmic membrane structures. The host susceptibility test demonstrated that HzNV was able to infect various cell lines ranging from insect cells to mammalian cells. However, only Hz-AM1 appeared to be fully permissive for HzNV, as the mature viral coat protein essential for HzNV particle formation was limited to Hz-AM1 cells.</p> <p>Conclusion</p> <p>A novel alphanodavirus, which is 30 nm in diameter and with a limited host range, was discovered in Hz-AM1 cells.</p

    Recommended high performance telescope system design for the TianQin project

    Full text link
    China is planning to construct a new space-borne gravitational-wave (GW) observatory, the TianQin project, in which the spaceborne telescope is an important component in laser interferometry. The telescope is aimed to transmit laser beams between the spacecrafts for the measurement of the displacements between proof-masses in long arms. The telescope should have ultra-small wavefront deviation to minimize noise caused by pointing error, ultra-stable structure to minimize optical path noise caused by temperature jitter, ultra-high stray light suppression ability to eliminate background noise. In this paper, we realize a telescope system design with ultra-stable structure as well as ultra-low wavefront distortion for the space-based GW detection mission. The design requirements demand extreme control of high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the initial structure design of the mentioned four-mirror optical system is explored. After optimization, the maximum RMS wavefront error is less than lamda/300 over the full field of view (FOV), which meets the noise budget on the telescope design. The stray light noise caused by the back reflection of the telescope is also analyzed. The noise at the position of optical bench is less than 10-10 of the transmitted power, satisfying the requirements of space gravitational-wave detection. We believe that our design can be a good candidate for TianQin project, and can also be a good guide for the space telescope design in any other similar science project

    Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia solanacearum

    Get PDF
    In this paper, the enhanced antibacterial activity of silver nanoparticles (AgNPs) against the phytopathogenic bacterium Ralstonia solanacearum after stabilization using selected surfactants (SDS, SDBS, TX-100, and Tween 80) was examined, in comparison with silver ion. Tween 80 was found to be the most preferable stabilizer of AgNPs due to the beneficial synergistic effects of the AgNPs and surfactant. However, all the surfactants nearly had no effects on the antibacterial activity of Ag+. In vitro, Tween 80-stabilized AgNPs showed the highest bactericidal activity against R. solanacearum. Further measurements using TEM, fluorescence microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that though Ag+ and Tween 80-Ag+ induced high toxicity, Tween 80-stabilized AgNPs displayed most severe damage when in direct contact with cells, causing mechanistic injury to the cell membrane and strongly modifying and destructing the cellular proteins. Meanwhile, in vivo, the pot experiments data indicated that the control efficiency of Tween 80-stabilized AgNPs on tobacco bacterial wilt was 96.71%, 90.11%, and 84.21%, at 7 days, 14 days, and 21 days, respectively. Based on the results evidencing their advantageous low dosage requirements and strong antimicrobial activity, Tween 80-stabilized AgNPs are a promising antibacterial agent for use in alternative crop disease control approaches

    Transport evidence of superlattice Dirac cones in graphene monolayer on twisted boron nitride substrate

    Full text link
    Strong band engineering in two-dimensional (2D) materials can be achieved by introducing moir\'e superlattices, leading to the emergence of various novel quantum phases with promising potential for future applications. Presented works to create moir\'e patterns have been focused on a twist embedded inside channel materials or between channel and substrate. However, the effects of a twist inside the substrate materials on the unaligned channel materials are much less explored. In this work, we report the realization of superlattice multi-Dirac cones with the coexistence of the main Dirac cone in a monolayer graphene (MLG) on a ~0.14{\deg} twisted double-layer boron nitride (tBN) substrate. Transport measurements reveal the emergence of three pairs of superlattice Dirac points around the pristine Dirac cone, featuring multiple metallic or insulating states surrounding the charge neutrality point (CNP). Displacement field tunable and electron-hole asymmetric Fermi velocities are indicated from temperature dependent measurements, along with the gapless dispersion of superlattice Dirac cones. The experimental observation of multiple Dirac cones in MLG/tBN heterostructure is supported by band structure calculations employing periodic moir\'e potential. Our results unveil the potential of using twisted substrate as a universal band engineering technique for 2D materials regardless of lattice matching and crystal orientations, which might pave the way for a new branch of twistronics.Comment: 13 pages, 4 figure

    Supercurrent, Multiple Andreev Reflections and Shapiro Steps in InAs Nanosheet Josephson Junctions

    Full text link
    High-quality free-standing InAs nanosheets are emerging layered semiconductor materials with potentials in designing planar Josephson junction devices for novel physics studies due to their unique properties including strong spin-orbit couplings, large Land\'e g-factors and the two dimensional nature. Here, we report an experimental study of proximity induced superconductivity in planar Josephson junction devices made from free-standing InAs nanosheets. The nanosheets are grown by molecular beam epitaxy and the Josephson junction devices are fabricated by directly contacting the nanosheets with superconductor Al electrodes. The fabricated devices are explored by low-temperature carrier transport measurements. The measurements show that the devices exhibit a gate-tunable supercurrent, multiple Andreev reflections, and a good quality superconductor-semiconductor interface. The superconducting characteristics of the Josephson junctions are investigated at different magnetic fields and temperatures, and are analyzed based on the Bardeen-Cooper-Schrieffer (BCS) theory. The measurements of ac Josephson effect are also conducted under microwave radiations with different radiation powers and frequencies, and integer Shapiro steps are observed. Our work demonstrates that InAs nanosheet based hybrid devices are desired systems for investigating forefront physics, such as the two-dimensional topological superconductivity

    Perpendicular in-plane negative magnetoresistance in ZrTe5

    Full text link
    The unique band structure in topological materials frequently results in unusual magneto-transport phenomena, one of which is in-plane longitudinal negative magnetoresistance (NMR) with the magnetic field aligned parallel to the electrical current direction. This NMR is widely considered as a hallmark of chiral anomaly in topological materials. Here we report the observation of in-plane NMR in the topological material ZrTe5 when the in-plane magnetic field is both parallel and perpendicular to the current direction, revealing an unusual case of quantum transport beyond the chiral anomaly. We find that a general theoretical model, which considers the combined effect of Berry curvature and orbital moment, can quantitatively explain this in-plane NMR. Our results provide new insights into the understanding of in-plane NMR in topological materials
    • …
    corecore