23 research outputs found

    Recombination analysis based on the complete genome of bocavirus

    Get PDF
    Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs). Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine

    The Functional Variant in the 3'UTR of IGF1 with the Risk of Gastric Cancer in a Chinese Population

    No full text
    Background/Aims: IGF-1 can act as an endocrine hormone and its signaling server as essential roles in regulating tumorigenesis. Polymorphisms in IGF-1 have been reported associated bad prognosis of with human cancer, but their association with the risk of human gastric cancer (GC) has not been found so far. In this study rs6218 located in the 3'UTR of IGF-1 was selected to evaluate its relationship with the risk of GC among Chinese population. Methods: Questionnaire, SNaPshot genotype assay, real time PCR assay, cell transfection and the dual luciferase reporter assay were used in our study. Results: SNP rs6218 in IGF-1 3'-UTR was involved in the occurrence of GC by acting as a tumor promotion factor while rs6128 acting as a risk factor. SNP rs6128 was also could be regulated by miR-603 which caused an up-regulation of IGF-1 in patients with UC and CC genotype. Furthermore, the carriers of UC and CC genotype presented a big tumor size as well as the high probability of metastasis. Conclusion: In conclusion, our findings have shown that the SNP rs6218 in IGF-1 3'-UTR, through disrupting the regulatory role of miR-603 in IGF-1 expression, rs16128 in IGF-1 might act as a promotion factor in the pathogenesis of GC

    Toxoplasma Gondii

    No full text

    LincRNA-Cox2 regulates IL6/JAK3/STAT3 and NF-κB P65 pathway activation in Listeria monocytogenes-infected RAW264.7 cells

    No full text
    Listeria monocytogenes (Lm) can lead to high mortality rates relative to other foodborne pathogens. Lm-induced inflammation is partly characterized by macrophage activation. Long non-coding RNAs (lncRNAs) have important roles in various biological processes. However, it is unknown how lncRNAs regulate the host response to Lm infection. To identify the role of lncRNA in Lm infection, we used in vitro and in vivo models. We found that lincRNA-Cox2 was highly expressed in Lm-infected RAW264.7 cells. LincRNA-Cox2 knockdown resulted in reduced proinflammatory cytokines, apoptosis, migration ability and enhanced phagocytosis of Lm. LincRNA-Cox2 knockdown also reduced the phosphorylation of Janus kinase 3 (JAK3) and signal transducer and activator of transcription (STAT3) and the nuclear translocation of nuclear factor (NF)-κB P65, which are known to be involved in inflammatory responses. Experimentally inhibiting the protein and phosphorylation levels of STAT3 resulted in reduced proinflammatory cytokines and enhanced phagocytosis of Lm by the RAW264.7 cells. Our research suggests that lincRNA-Cox2 plays important roles in inflammation, the phagocytic function and cell migration ability of RAW264.7 cells by activating interleukin (IL)-6/JAK3/STAT3 signaling, and lincRNA-Cox2 also regulates NF-κB P65 nuclear translocation. Our research provides new insights into the regulatory role of lincRNA-Cox2 in Lm infection

    MALAT1/miR-7-5p/TCF4 Axis Regulating Menstrual Blood Mesenchymal Stem Cells Improve Thin Endometrium Fertility by the Wnt Signaling Pathway

    No full text
    Thin endometrium (TE) is a significant factor contributing to fertility challenges, and addressing this condition remains a central challenge in reproductive medicine. Menstrual blood–derived mesenchymal stem cells (MenSCs) play a crucial role in tissue repair and regeneration, including that of TE. The Wnt signaling pathway, which is highly conserved and prevalent in eukaryotes, is essential for cell proliferation, tissue development, and reproductive functions. MALAT1 is implicated in various transcriptional and molecular functions, including cell proliferation and metastasis. However, the combined effects of the Wnt signaling pathway and the long non-coding RNA (lncRNA) MALAT1 on the regulation of MenSCs’ regenerative capabilities in tissue engineering have not yet been explored. To elucidate the regulatory mechanism of MALAT1 in TE, we analyzed its expression levels in normal endometrium and TE tissues, finding that low expression of MALAT1 was associated with poor clinical prognosis. In addition, we conducted both in vitro and in vivo functional assays to examine the role of the MALAT1/miR-7-5p/TCF4 axis in cell proliferation and migration. Techniques such as dual-luciferase reporter assay, fluorescent in situ hybridization, and immunoblot experiments were utilized to clarify the molecular mechanism. To corroborate these findings, we established a TE model and conducted pregnancy experiments, demonstrating a strong association between MALAT1 expression and endometrial fertility. In conclusion, our comprehensive study provides strong evidence supporting that lncRNA MALAT1 modulates TCF4 expression in the Wnt signaling pathway through interaction with miR-7-5p, thus enhancing MenSCs-mediated improvement of TE and improving fertility

    Recombination analysis based on the complete genome of bocavirus

    No full text
    Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs). Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.</p
    corecore