662 research outputs found

    Implementation of an RFID Medical Center Allocation and Picking up Process Support Cloud System

    Get PDF
    Abstract: In this study, the expendable medical supplies warehouse of the Medical Center can be seen as a logistics center. The users act as the front-end clients and the medical material is a cargo. The concept combines RFID, PDA technology and cloud computing to design and implement the system. The main purpose of the system is to reduce the errors when the operating personnel distribute the expendable medical supplies

    Inferring Condition-Specific Targets of Human TF-TF Complexes Using ChIP-seq Data

    Get PDF
    Background: Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and regulate gene expression. Many databases are created to describe known TF complexes identified by either mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under different experiment conditions are available, making it possible to investigate condition-specific (cell type and/or physiologic state) TF complexes and their target genes. Results: Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes (called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted 2,392 TF complexes and 13,504 high-confidence or 127,994 low-confidence regulatory interactions amongst TF complexes and their target genes. We validated our predictions by (i) comparing predicted TF complexes to external TF complex databases, (ii) validating selected target genes of TF complexes using ChIP-qPCR and RT-PCR experiments, and (iii) analysing target genes of select TF complexes using gene ontology enrichment to demonstrate the accuracy of our work. Finally, the predicted results above were integrated and employed to construct a CST database. Conclusions: We built up a methodology to construct the CST database, which contributes to the analysis of transcriptional regulation and the identification of novel TF-TF complex formation in a certain condition. This database also allows users to visualize condition-specific TF regulatory networks through a user-friendly web interface

    One-for-All: Towards Universal Domain Translation with a Single StyleGAN

    Full text link
    In this paper, we propose a novel translation model, UniTranslator, for transforming representations between visually distinct domains under conditions of limited training data and significant visual differences. The main idea behind our approach is leveraging the domain-neutral capabilities of CLIP as a bridging mechanism, while utilizing a separate module to extract abstract, domain-agnostic semantics from the embeddings of both the source and target realms. Fusing these abstract semantics with target-specific semantics results in a transformed embedding within the CLIP space. To bridge the gap between the disparate worlds of CLIP and StyleGAN, we introduce a new non-linear mapper, the CLIP2P mapper. Utilizing CLIP embeddings, this module is tailored to approximate the latent distribution in the P space, effectively acting as a connector between these two spaces. The proposed UniTranslator is versatile and capable of performing various tasks, including style mixing, stylization, and translations, even in visually challenging scenarios across different visual domains. Notably, UniTranslator generates high-quality translations that showcase domain relevance, diversity, and improved image quality. UniTranslator surpasses the performance of existing general-purpose models and performs well against specialized models in representative tasks. The source code and trained models will be released to the public

    Inferring Condition-Specific Targets of Human TF-TF Complexes Using ChIP-seq Data

    Get PDF
    Background: Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and regulate gene expression. Many databases are created to describe known TF complexes identified by either mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under different experiment conditions are available, making it possible to investigate condition-specific (cell type and/or physiologic state) TF complexes and their target genes. Results: Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes (called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted 2,392 TF complexes and 13,504 high-confidence or 127,994 low-confidence regulatory interactions amongst TF complexes and their target genes. We validated our predictions by (i) comparing predicted TF complexes to external TF complex databases, (ii) validating selected target genes of TF complexes using ChIP-qPCR and RT-PCR experiments, and (iii) analysing target genes of select TF complexes using gene ontology enrichment to demonstrate the accuracy of our work. Finally, the predicted results above were integrated and employed to construct a CST database. Conclusions: We built up a methodology to construct the CST database, which contributes to the analysis of transcriptional regulation and the identification of novel TF-TF complex formation in a certain condition. This database also allows users to visualize condition-specific TF regulatory networks through a user-friendly web interface

    The Chitinolytic Activities of Streptomyces sp. TH-11

    Get PDF
    Chitin is an abundant biopolymer composed of units of N-acetyl-D-glucosamine linked by β-1,4 glycosidic bonds. Chitin is the main component of the shells of mollusks, the cell wall of fungi and yeast and of the exoskeleton of crustaceans and insects. The degradation of chitin is catalyzed by chitinases that occur in a wide range of organisms. Among them, the chitinases from microorganisms are extremely important for the degradation and recycling of the carbon and nitrogen trapped in the large amount of insoluble chitin in nature. Streptomyces sp. TH-11 was isolated from the sediment of the Tou-Chien River, Taiwan. The chitinolytic enzyme activities were detected using a rapid in-gel detection method from the cell-free preparation of the culture medium of TH-11. The chitinolytic enzyme activity during prolonged liquid culturing was also analyzed by direct measurement of the chitin consumption. Decomposition of the exoskeleton of shrimps was demonstrated using electron microscopy and atomic force microscopy

    Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

    Full text link
    Recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to existing learning-based methods, our core idea is to incorporate the domain knowledge of the LDR image formation pipeline into our model. We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization. We then propose to learn three specialized CNNs to reverse these steps. By decomposing the problem into specific sub-tasks, we impose effective physical constraints to facilitate the training of individual sub-networks. Finally, we jointly fine-tune the entire model end-to-end to reduce error accumulation. With extensive quantitative and qualitative experiments on diverse image datasets, we demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.Comment: CVPR 2020. Project page: https://www.cmlab.csie.ntu.edu.tw/~yulunliu/SingleHDR Code: https://github.com/alex04072000/SingleHD

    Enteric bacterial loads are associated with interleukin-6 levels in systemic inflammatory response syndrome patients

    Get PDF
    AbstractBackgroundLoss of intestinal integrity is a critical contributor to excessive inflammation following severe trauma or major surgery. In the case of enterocyte damage, intestinal fatty acid-binding protein (IFABP) is released into the extracellular space. Excessive production of interleukin (IL)-6 can induce systemic inflammatory response syndrome (SIRS). However, the correlation of IL-6 with gut barrier failure and bacterial translocation in critically ill patients has not been well characterized.PurposesTo define the relationship between enteric bacterial loads and IL-6 levels in patients with SIRS.MethodsVariables related to prognosis and treatment were measured in 85 patients with SIRS upon admission to the emergency room. IL-6 and IFABP were measured using an enzyme-linked immunosorbent assay. Enteric bacterial loads in blood were measured through quantitative real-time polymerase chain reaction with primers specific for enteric bacteria.ResultsMultivariate analysis revealed a positive correlation between enteric bacterial loads and IL-6 levels in blood. Elevated IFABP concentration was associated with low blood pressure, high respiration rate, hyperglycemia, and high Sequential Organ Failure Assessment score. Elevated C-reactive protein concentrations were associated with higher soluble CD14 levels in blood.ConclusionEnterocyte damage is associated with hypotension and tachypnia in patients with SIRS. Gut function failure may permit enteric bacteria to enter the blood, thereby elevating IL-6 levels and inducing a systemic inflammatory response, resulting in multiple organ failure

    A Smartphone APP for Health and Tourism Promotion

    Get PDF
    The main purpose of this study is to develop an APP by integrating GPS to provide the digitized information of local cultural spots to guide tourists for tourism promotion and the digitized information of mountaineering trails to monitor energy expenditure (EE) for health promotion. The provided cultural information is also adopted for educational purpose. Extended Technology Acceptance Model (TAM) was used to evaluate the usefulness and behavior intention of the provided information and functions in the developed system. Most users agreed that the system is useful for health promotion, tourism promotion, and folk-culture education. They also showed strong intention and positive attitude toward continuous use of the APP

    Superior Mesenteric Artery Syndrome: A Single-institution Experience

    Get PDF
    Background:Superior mesenteric artery syndrome (SMAS) is a rare disease in adult. SMAS is characterized by acute, or, more commonly, chronic nonspecific symptoms due to duodenal obstruction and severe malnutrition with reduced arterio-mesenteric angle and distance. Surgical treatment may be necessary in most cases with chronic symptoms or when conservative treatment fails in SMAS.Methods:A retrospective chart review was performed on patients who underwent operation for SMAS from January 2008 to August 2020 in Cardinal Tien Hospital. Patients’ clinical presentations, surgical intervention, and outcomes.Results:Data from a total of 14 patients diagnosed with SMAS were analyzed, of which seven were diagnosed with SMAS by abdominal computed tomography and upper gastrointestinal series with water-soluble barium contrast. Six of the confirmed cases underwent surgery, namely, gastric decompression using a nasogastric tube, andcorrection of electrolyte imbalance. The nasoduodenal tube was placed through the obstructed duodenum to provide a high-nutrient fluid supplement. After conservative treatment failure, the patients underwent surgery. Of the six patients, four underwent duodenojejunostomy, one underwent a mini-laparotomy duodenojejunostomy bypass, and the last one underwent Roux-en-Y duodenojejunal bypass with duodenal feeding tube insertion.Conclusion:Patients with SMAS should initially be treated conservative. Surgical intervention should be considered in patients in whom conservative treatments were not effective.Complete resolution of all symptoms may not always be guaranteed after surgical intervention. Laparoscopy is currently widely used. In well-selected patients, minimally invasive or mini-laparotomy duodenojejunostomy is a safe and effective treatment for SMAS. The main advantages of mini-laparotomy duodenojejunostomy over other surgical approaches include half-length surgical incision and a shorter operative time. Duodenojejunostomy is rapidly becoming the standard procedure of this condition, and it has excellent outcomes comparable with those of open surgery
    corecore