190 research outputs found

    Proline-Directed Androgen Receptor Phosphorylation

    Get PDF
    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens

    Structural diversity-guided optimization of carbazole derivatives as potential cytotoxic agents

    Get PDF
    Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their in vitro cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines. The preliminary results indicated that compound 14a exhibited high inhibitory activities on 7901 and A875 cancer cells with the lowest IC50 of 11.8 ± 1.26 and 9.77 ± 8.32 μM, respectively, which might be the new lead compound for discovery of novel carbazole-type anticancer agents

    Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys

    Get PDF
    Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT
    • …
    corecore