29 research outputs found

    A Multi-Agent System for E-Business Processes Monitoring in a Web-Based Environment

    Get PDF
    In this paper, we present a multi-agent system MAGS for the e-business processes monitoring in a web-based environment. We classify the types of agents in MAGS by their monitoring capabilities. An algorithm is given to explain the mechanism of supervising and controlling the execution of business processes. An abstract model of alerts, which can give warnings of infringement on business policies, is proposed. Access control can also be realized by MAGS, which manifests in delivering different view of the business process to different roles participate in it. Being successfully adopted in a customer service management system, MAGS has been proven flexible and practical

    Transport evidence of superlattice Dirac cones in graphene monolayer on twisted boron nitride substrate

    Full text link
    Strong band engineering in two-dimensional (2D) materials can be achieved by introducing moir\'e superlattices, leading to the emergence of various novel quantum phases with promising potential for future applications. Presented works to create moir\'e patterns have been focused on a twist embedded inside channel materials or between channel and substrate. However, the effects of a twist inside the substrate materials on the unaligned channel materials are much less explored. In this work, we report the realization of superlattice multi-Dirac cones with the coexistence of the main Dirac cone in a monolayer graphene (MLG) on a ~0.14{\deg} twisted double-layer boron nitride (tBN) substrate. Transport measurements reveal the emergence of three pairs of superlattice Dirac points around the pristine Dirac cone, featuring multiple metallic or insulating states surrounding the charge neutrality point (CNP). Displacement field tunable and electron-hole asymmetric Fermi velocities are indicated from temperature dependent measurements, along with the gapless dispersion of superlattice Dirac cones. The experimental observation of multiple Dirac cones in MLG/tBN heterostructure is supported by band structure calculations employing periodic moir\'e potential. Our results unveil the potential of using twisted substrate as a universal band engineering technique for 2D materials regardless of lattice matching and crystal orientations, which might pave the way for a new branch of twistronics.Comment: 13 pages, 4 figure

    Rapid Antidepressant Activity of Ethanol Extract of Gardenia jasminoides

    Get PDF
    Ethanol extract of Yueju pill, a Traditional Chinese Medicine herbal formula widely used to treat mood disorders, demonstrates rapid antidepressant effects similar to ketamine, likely via instant enhancement of brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Here we investigated ethanol extracts of the constituent herbs of Yueju responsible for rapid antidepressant effects. Screening with tail suspension test in Kunming mice at 24 hours after a single administration of five individual constituent herbs of Yueju, we found that only Gardenia jasminoides Ellis (GJ) showed a significant effect. The antidepressant response started at 2 hours after GJ administration. Similar to Yueju and ketamine, a single administration of GJ significantly reduced the number of escape failures in the learned helplessness test. Furthermore, GJ decreased latency of food consumption in the novelty suppressed-feeding test. Additionally, starting from 2 hours and continuing for over 20 hours after GJ administration, BDNF expression in the hippocampus was upregulated, temporally linked with the antidepressant response. These findings suggest that GJ has rapid antidepressant effects, which are associated with the elevated expression of BDNF in the hippocampus. In Yueju formula, Yue represents GJ, as thus our study demonstrates the primary role of GJ in rapid antidepressant efficacy of Yueju

    Electroacupuncture ameliorates inflammatory response induced by retinal ischemia-reperfusion injury and protects the retina through the DOR-BDNF/Trkb pathway

    Get PDF
    Objectives: Retinal ischemia-reperfusion injury (RIRI) is the common pathological basis of many ophthalmic diseases in the later stages, and inflammation is the primary damage mechanism of RIRI. Our study aimed to assess whether electroacupuncture (EA) has a protective effect against RIRI and to elucidate its related mechanisms.Methods: A high-intraocular pressure (HIOP) model was used to simulate RIRI in Wistar rats. EA was applied to the EA1 group [Jingming (BL1) + Shuigou (GV26)] and the EA2 group [Jingming (BL1) + Hegu (LI4)] respectively for 30 min starting immediately after the onset of reperfusion and repeated (30 min/time) at 12 h and then every 24 h until days 7 after reperfusion. The pathological changes in the retina were observed by H and E staining after HIOP. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was utilized to observe retinal cell apoptosis. The mRNA expression of IL1-β, TNF-α, IL-4, IL-10, δ-opioid receptor (DOR), brain-derived neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the retina was measured by quantitative real-time PCR.Results: HIOP caused structural disorders of the retina, decreased RGCs, and increased retinal cell apoptosis. At 1 and 3 days of RIRI, retinal apoptotic cells in the EA group were significantly reduced, while there was no distinct difference in the EA group compared with the HIOP group at 7 days of RIRI. Compared with that in the HIOP group, the expression of anti-inflammatory factors, DOR and TrkB was increased, and the expression of pro-inflammatory factors was decreased in the EA group. In contrast, HIOP had no appreciable effect on BDNF expression.Conclusion: EA at Jingming (BL1) and Shuigou (GV26) or at Jingming (BL1) and Hegu (LI4) may inhibit RIRI induced inflammation through activating the DOR-BDNF/TrkB pathway to protect the retina, especially the pair of Jingming (BL1) and Shuigou (GV26) has better inhibitory effects on inflammation

    Exponential Multistep Methods for Stiff Delay Differential Equations

    No full text
    Stiff delay differential equations are frequently utilized in practice, but their numerical simulations are difficult due to the complicated interaction between the stiff and delay terms. At the moment, only a few low-order algorithms offer acceptable convergent and stable features. Exponential integrators are a type of efficient numerical approach for stiff problems that can eliminate the influence of stiffness on the scheme by precisely dealing with the stiff term. This study is concerned with two exponential multistep methods of Adams type for stiff delay differential equations. For semilinear delay differential equations, applying the linear multistep method directly to the integral form of the equation yields the exponential multistep method. It is shown that the proposed k-step method is stiffly convergent of order k. On the other hand, we can follow the strategy of the Rosenbrock method to linearize the equation along the numerical solution in each step. The so-called exponential Rosenbrock multistep method is constructed by applying the exponential multistep method to the transformed form of the semilinear delay differential equation. This method can be easily extended to nonlinear delay differential equations. The main contribution of this study is that we show that the k-step exponential Rosenbrock multistep method is stiffly convergent of order k+1 within the framework of a strongly continuous semigroup on Banach space. As a result, the methods developed in this study may be utilized to solve abstract stiff delay differential equations and can be served as time matching methods for delay partial differential equations. Numerical experiments are presented to demonstrate the theoretical results

    Prediction of Cervical Cancer Outcome by Identifying and Validating a NAD+ Metabolism-Derived Gene Signature

    No full text
    Cervical cancer (CC) is the second most common female cancer. Excellent clinical outcomes have been achieved with current screening tests and medical treatments in the early stages, while the advanced stage has a poor prognosis. Nicotinamide adenine dinucleotide (NAD+) metabolism is implicated in cancer development and has been enhanced as a new therapeutic concept for cancer treatment. This study set out to identify an NAD+ metabolic-related gene signature for the prospect of cervical cancer survival and prognosis. Tissue profiles and clinical characteristics of 293 cervical cancer patients and normal tissues were downloaded from The Cancer Genome Atlas database to obtain NAD+ metabolic-related genes. Based on the differentially expressed NAD+ metabolic-related genes, cervical cancer patients were divided into two subgroups (Clusters 1 and 2) using consensus clustering. In total, 1404 differential genes were acquired from the clinical data of these two subgroups. From the NAD+ metabolic-related genes, 21 candidate NAD+ metabolic-related genes (ADAMTS10, ANGPTL5, APCDD1L, CCDC85A, CGREF1, CHRDL2, CRP, DENND5B, EFS, FGF8, P4HA3, PCDH20, PCDHAC2, RASGRF2, S100P, SLC19A3, SLC6A14, TESC, TFPI, TNMD, ZNF229) were considered independent indicators of cervical cancer prognosis through univariate and multivariate Cox regression analyses. The 21-gene signature was significantly different between the low- and high-risk groups in the training and validation datasets. Our work revealed the promising clinical prediction value of NAD+ metabolic-related genes in cervical cancer

    Using surface free energy to evaluate the fracture performance of asphalt binders

    No full text
    Surface free energy has been mainly employed to determine the adhesive bond energy for the evaluation of moisture resistance between binder and aggregate, but its association with binder fracture resistance has not been fully explored yet. Surface free energy was successfully measured for five binders by using sessile drop method. The Double-Edge Notched Tensile and Binder Fracture Energy tests were used to establish the correlation between binder fracture parameters and surface free energy. Correlation results indicated that surface free energy is a good indicator for binder fracture performance

    An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus

    Get PDF
    Nitrogen (N) is an essential factor for crop yield. Here, we characterized 605 genes from 25 gene families that form the complex gene networks of N utilization pathway in Brassica napus. We found unequal gene distribution between the An- and Cn-sub-genomes, and that genes derived from Brassica rapa were more retained. Transcriptome analysis indicated that N utilization pathway gene activity shifted in a spatio-temporal manner in B. napus. A low N (LN) stress RNA-seq of B. napus seedling leaves and roots was generated, which proved that most N utilization related genes were sensitive to LN stress, thereby forming co-expression network modules. Nine candidate genes in N utilization pathway were confirmed to be significantly induced under N deficiency conditions in B. napus roots, indicating their potential roles in LN stress response process. Analyses of 22 representative species confirmed that the N utilization gene networks were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Consistent with B. napus, the genes in this pathway commonly showed a wide and conserved expression profile in response to N stress in other plants. The network, genes, and gene-regulatory modules identified here represent resources that may enhance the N utilization efficiency or the LN tolerance of B. napus

    Experimental Study on the Space Electrostatic Discharge Effect and the Single Event Effect of SRAM Devices for Satellites

    No full text
    Space Electrostatic Discharge Effect (SESD) and Single Event Effect (SEE) are two major space environmental factors that cause spacecraft failure. Previous studies have established that both can lead to soft errors such as upset of memory cells. An ESD generator and a pulsed laser experimental facility were used to test a low-power asynchronous timing monolithic SRAM. The characteristics of soft error number, single/multi-bit upsets, and supply current values were compared for similarities and differences. The test revealed that SEE-induced soft errors were mainly single-bit upsets (SBU), whereas SESD-induced soft errors were predominantly multi-bit upsets (MBU). Additionally, when soft errors occur in the circuits, the current of the power supply drops, which enables the device to be evaluated by monitoring the current value. This study provides experimental support for distinguishing device errors caused by these two effects, as well as references for further accurate identification of in-orbit faults and corresponding protection design
    corecore