955 research outputs found
RF-Based Simultaneous Localization and Source Seeking for Multi-Robot Systems
This paper considers a radio-frequency (RF)-based simultaneous localization
and source-seeking (SLASS) problem in multi-robot systems, where multiple
robots jointly localize themselves and an RF source using distance-only
measurements extracted from RF signals and then control themselves to approach
the source. We design a Rao-Blackwellized particle filter-based algorithm to
realize the joint localization of the robots and the source. We also devise an
information-theoretic control policy for the robots to approach the source. In
our control policy, we maximize the predicted mutual information between the
source position and the distance measurements, conditioned on the robot
positions, to incorporate the robot localization uncertainties. A projected
gradient ascent method is adopted to solve the mutual information maximization
problem. Simulation results show that the proposed SLASS framework outperforms
two benchmarks in terms of the root mean square error (RMSE) of the estimated
source position and the decline of the distances between the robots and the
source, indicating more effective approaching of the robots to the source
The quantum solvation, adiabatic versus nonadiabatic, and Markovian versus non-Markovian nature of electron transfer rate processes
In this work, we revisit the electron transfer rate theory, with particular
interests in the distinct quantum solvation effect, and the characterizations
of adiabatic/nonadiabatic and Markovian/non-Markovian rate processes. We first
present a full account for the quantum solvation effect on the electron
transfer in Debye solvents, addressed previously in J. Theore. & Comput. Chem.
{\bf 5}, 685 (2006). Distinct reaction mechanisms, including the quantum
solvation-induced transitions from barrier-crossing to tunneling, and from
barrierless to quantum barrier-crossing rate processes, are shown in the fast
modulation or low viscosity regime. This regime is also found in favor of
nonadiabatic rate processes. We further propose to use Kubo's motional
narrowing line shape function to describe the Markovian character of the
reaction. It is found that a non-Markovian rate process is most likely to occur
in a symmetric system in the fast modulation regime, where the electron
transfer is dominant by tunneling due to the Fermi resonance.Comment: 13 pages, 10 figures, submitted to J. Phys. Chem.
Sequence Dependent Repair of 1,N6-Ethenoadenine by DNA Repair Enzymes ALKBH2, ALKBH3, and AlkB
Mutation patterns of DNA adducts, such as mutational spectra and signatures, are useful tools for diagnostic and prognostic purposes. Mutational spectra of carcinogens derive from three sources: adduct formation, replication bypass, and repair. Here, we consider the repair aspect of 1,N6-ethenoadenine (εA) by the 2-oxoglutarate/Fe(II)-dependent AlkB family enzymes. Specifically, we investigated εA repair across 16 possible sequence contexts (5′/3′ flanking base to εA varied as G/A/T/C). The results revealed that repair efficiency is altered according to sequence, enzyme, and strand context (ss- versus ds-DNA). The methods can be used to study other aspects of mutational spectra or other pathways of repair
A Stabilized, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting Cell Incorporating Earth-Abundant Electrocatalysts with Steady-State pH Gradients and Product Separation Enabled by a Bipolar Membrane
An efficient, stable, and intrinsically safe solar water-splitting device is demonstrated using a III–V tandem junction photoanode, an acid-stable, earth-abundant hydrogen evolution catalyst, and a bipolar membrane. The integrated photoelectrochemical cell operates under a steady-state pH gradient and achieves ≈10% solar-to-hydrogen conversion efficiency, >100 h of stability in a large (>1 cm^2) photoactive area in relation to most previous reports
- …