6,094 research outputs found
Role of Internal Motions and Molecular Geometry on the NMR Relaxation of Hydrocarbons
The role of internal motions and molecular geometry on H NMR relaxation
times in hydrocarbons is investigated using MD (molecular dynamics)
simulations of the autocorrelation functions for in{\it tra}molecular
and in{\it ter}molecular H-H dipole-dipole interactions
arising from rotational () and translational () diffusion, respectively.
We show that molecules with increased molecular symmetry such as neopentane,
benzene, and isooctane show better agreement with traditional hard-sphere
models than their corresponding straight-chain -alkane, and furthermore that
spherically-symmetric neopentane agrees well with the Stokes-Einstein theory.
The influence of internal motions on the dynamics and relaxation of
-alkanes are investigated by simulating rigid -alkanes and comparing with
flexible (i.e. non-rigid) -alkanes. Internal motions cause the rotational
and translational correlation-times to get significantly shorter
and the relaxation times to get significantly longer, especially for
longer-chain -alkanes. Site-by-site simulations of H's along the chains
indicate significant variations in and across the chain,
especially for longer-chain -alkanes. The extent of the stretched (i.e.
multi-exponential) decay in the autocorrelation functions are
quantified using inverse Laplace transforms, for both rigid and flexible
molecules, and on a site-by-site bases. Comparison of measurements
with the site-by-site simulations indicate that cross-relaxation (partially)
averages-out the variations in and across the chain of
long-chain -alkanes. This work also has implications on the role of
nano-pore confinement on the NMR relaxation of fluids in the organic-matter
pores of kerogen and bitumen
Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy
Black phosphorus (P) has emerged as a layered semiconductor with a unique
crystal structure featuring corrugated atomic layers and strong in-plane
anisotropy in its physical properties. Here, we demonstrate that the crystal
orientation and mechanical anisotropy in free-standing black P thin layers can
be precisely determined by spatially resolved multimode nanomechanical
resonances. This offers a new means for resolving important crystal orientation
and anisotropy in black P device platforms in situ beyond conventional optical
and electrical calibration techniques. Furthermore, we show that
electrostatic-gating-induced straining can continuously tune the mechanical
anisotropic effects on multimode resonances in black P electromechanical
devices. Combined with finite element modeling (FEM), we also determine the
Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and
armchair directions, respectively.Comment: Main Text: 13 Pages, 4 Figures; Supplementary Information: 5 Pages, 2
Figures, 2 Table
Selling Social Conservatism
This research project tests conventional wisdom about the importance of social conservatism in televised political advertisements. Through regression analysis performed on congressional campaign commercials from 2000 and 2002, I isolated significant variables influencing the outcome of Midwestern congressional campaign. I tested the influence of factors such as amount of money spent, party of candidate, gender and incumbency. I found that incumbency and the very presence of the candidate in television advertisements played the most significant role in determining electoral success, while socially conservative issues in the advertisements did not significantly influence electoral success
Return to Sport and Athletic Function in an Active Population After Primary Arthroscopic Labral Reconstruction of the Hip
Background: Labral reconstruction has been advocated as an alternative to debridement for the treatment of irreparable labral tears, showing favorable short-term results. However, literature is scarce regarding outcomes and return to sport in the nonelite athletic population.
Purpose: To report minimum 1-year clinical outcomes and the rate of return to sport in athletic patients who underwent primary hip arthroscopy with labral reconstruction in the setting of femoroacetabular impingement syndrome and irreparable labral tears.
Study Design: Case series; Level of evidence, 4.
Methods: Data were prospectively collected and retrospectively analyzed for patients who underwent an arthroscopic labral reconstruction between August 2012 and December 2017. Patients were included if they identified as an athlete (high school, college, recreational, or amateur); had follow-up on the following patient-reported outcomes (PROs): modified Harris Hip Score (mHHS), Nonarthritic Hip Score (NAHS), Hip Outcome Score–Sport Specific Subscale (HOS-SSS), and visual analog scale (VAS); and completed a return-to-sport survey at 1 year postoperatively. Patients were excluded if they underwent any previous ipsilateral hip surgery, had dysplasia, or had prior hip conditions. The proportions of patients who achieved the minimal clinically important difference (MCID) and patient acceptable symptomatic state (PASS) for mHHS and HOS-SSS were calculated. Statistical significance was set at P =.05.
Results: There were 32 (14 females) athletes who underwent primary arthroscopic labral reconstruction during the study period. The mean age and body mass index of the group were 40.3 years (range, 15.5-58.7 years) and 27.9 kg/m2 (range, 19.6-40.1 kg/m2), respectively. The mean follow-up was 26.4 months (range, 12-64.2 months). All patients demonstrated significant improvement in mHHS, NAHS, HOS-SSS, and VAS (P \u3c.001) at latest follow-up. Additionally, 84.4% achieved MCID and 81.3% achieved PASS for mHHS, and 87.5% achieved MCID and 75% achieved PASS for HOS-SSS. VAS pain scores decreased from 4.4 to 1.8, and the satisfaction with surgery was 7.9 out of 10. The rate of return to sport was 78%.
Conclusion: At minimum 1-year follow-up, primary arthroscopic labral reconstruction, in the setting of femoroacetabular impingement syndrome and irreparable labral tears, was associated with significant improvement in PROs in athletic populations. Return to sport within 1 year of surgery was 78%
Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C
The surface and interface properties of Pd(0.9)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity
Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing
Bone marrow derived mesenchymal stem cells (BM-MSCs) have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-α, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-postive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor) cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing
Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C
The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity
Tight Kernel Bounds for Problems on Graphs with Small Degeneracy
In this paper we consider kernelization for problems on d-degenerate graphs,
i.e. graphs such that any subgraph contains a vertex of degree at most .
This graph class generalizes many classes of graphs for which effective
kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and
H-topological-minor free graphs. We show that for several natural problems on
d-degenerate graphs the best known kernelization upper bounds are essentially
tight.Comment: Full version of ESA 201
Survey of anesthesiologists on anesthetic maintenance techniques and total intravenous anesthesia for endoscopic sinus surgery
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154490/1/alr22500.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154490/2/alr22500_am.pd
- …