8,125 research outputs found

    In vivo therapeutic efficacy of frog skin-derived peptides against Pseudomonas aeruginosa-induced pulmonary infection

    Get PDF
    Pseudomonas aeruginosa is an opportunistic and frequently drug-resistant pulmonary pathogen especially in cystic fibrosis sufferers. Recently, the frog skin-derived antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c were found to possess potent in vitro antipseudomonal activity. Here, they were first shown to preserve the barrier integrity of airway epithelial cells better than the human AMP LL-37. Furthermore, Esc(1-21)-1c was more efficacious than Esc(1-21) and LL-37 in protecting host from pulmonary bacterial infection after a single intra-tracheal instillation at a very low dosage of 0.1 mg/kg. The protection was evidenced by 2-log reduction of lung bacterial burden and was accompanied by less leukocytes recruitment and attenuated inflammatory response. In addition, the diastereomer was more efficient in reducing the systemic dissemination of bacterial cells. Importantly, in contrast to what reported for other AMPs, the peptide was administered at 2 hours after bacterial challenge to better reflect the real life infectious conditions. To the best of our knowledge, this is also the first study investigating the effect of AMPs on airway-epithelia associated genes upon administration to infected lungs. Overall, our data highly support advanced preclinical studies for the development of Esc(1-21)-1c as an efficacious therapeutic alternative against pulmonary P. aeruginosa infection

    Stable circulation modes in a dual-core matter-wave soliton laser

    Full text link
    We consider a model of a matter-wave laser generating a periodic array of solitary-wave pulses. The system, a general version of which was recently proposed in Ref. [5], is composed of two parallel tunnel-coupled cigar-shaped traps (a reservoir and a lasing cavity), solitons being released through a valve at one edge of the cavity. We report a stable lasing mode accounted for by circulations of a narrow soliton in the cavity, which generates an array of strong pulses (with 1,000 - 10,000 atoms in each, the array's duty cycle ~ 30%) when the soliton periodically hits the valve.Comment: J. of Physics B: At. Mol. Opt. Physics, in pres

    A model of a dual-core matter-wave soliton laser

    Full text link
    We propose a system which can generate a periodic array of solitary-wave pulses from a finite reservoir of coherent Bose-Einstein condensate (BEC). The system is built as a set of two parallel quasi-one-dimensional traps (the reservoir proper and a pulse-generating cavity), which are linearly coupled by the tunneling of atoms. The scattering length is tuned to be negative and small in the absolute value in the cavity, and still smaller but positive in the reservoir. Additionally, a parabolic potential profile is created around the center of the cavity. Both edges of the reservoir and one edge of the cavity are impenetrable. Solitons are released through the other cavity's edge, which is semi-transparent. Two different regimes of the intrinsic operation of the laser are identified: circulations of a narrow wave-function pulse in the cavity, and oscillations of a broad standing pulse. The latter regime is stable, readily providing for the generation of an array containing up to 10,000 permanent-shape pulses. The circulation regime provides for no more than 40 cycles, and then it transforms into the oscillation mode. The dependence of the dynamical regime on parameters of the system is investigated in detail.Comment: Journal of Physics B, in pres
    • …
    corecore