2,095 research outputs found
Unparticle physics and lepton flavor violating radion decays in the Randall-Sundrum scenario
We predict the branching ratios of the lepton flavor violating radion decays
r -> e^{\pm} \mu^{\pm}, r -> e^{\pm} \tau^{\pm} and r ->\mu^{\pm} \tau^{\pm} in
the framework of the Randall-Sundrum scenario that the lepton flavor violation
is carried by the scalar unparticle mediation. We observe that their BRs are
strongly sensitive to the unparticle scaling dimension and, for its small
values, the branching ratios can reach to the values of the order of 10^{-8},
for the heavy lepton flavor case.Comment: 21 pages, 11 Figures, 1 Tabl
A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A
Isoscaling is derived within a recently proposed modified Fisher model where
the free energy near the critical point is described by the Landau O(m^6)
theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one
of) the symmetries of the nuclear Hamiltonian. Within this framework we show
that isoscaling depends mainly on this order parameter through the 'external
(conjugate) field' H. The external field is just given by the difference in
chemical potentials of the neutrons and protons of the two sources. To
distinguish from previously employed isoscaling relationships, this approach is
dubbed: m - scaling. We discuss the relationship between this framework and the
standard isoscaling formalism and point out some substantial differences in
interpretation of experimental results which might result. These should be
investigated further both theoretically and experimentally.Comment: 14 pages, 5 figure
Spectral Correlation in Incommensurate Multi-Walled Carbon Nanotubes
We investigate the energy spectra of clean incommensurate double-walled
carbon nanotubes, and find that the overall spectral properties are described
by the so-called critical statistics of Anderson metal-insulator transition. In
the energy spectra, there exist three different regimes characterized by
Wigner-Dyson, Poisson, and semi-Poisson distributions. This feature implies
that the electron transport in incommensurate multi-walled nanotubes can be
either diffusive, ballistic, or intermediate between them, depending on the
position of the Fermi energy.Comment: final version to appear in Phys. Rev. Let
Modeling electrolytically top gated graphene
We investigate doping of a single-layer graphene in the presence of
electrolytic top gating. The interfacial phenomena is modeled using a modified
Poisson-Boltzmann equation for an aqueous solution of simple salt. We
demonstrate both the sensitivity of graphene's doping levels to the salt
concentration and the importance of quantum capacitance that arises due to the
smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters
for a special issue related to the NGC 2009 conference
(http://asdn.net/ngc2009/index.shtml
Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization
Modifications of the electromagnetic Maxwell Lagrangian in four dimensions
have been considered by some authors. One may include an explicit massive term
(Proca) and a topological but not Lorentz-invariant term within certain
observational limits.
We find the dual-corresponding gauge invariant version of this theory by
using the recently suggested gauge embedding method. We enforce this
dualisation procedure by showing that, in many cases, this is actually a
constructive method to find a sort of parent action, which manifestly
establishes duality. We also use the gauge invariant version of this theory to
formulate a Batalin-Vilkovisky quantization and present a detailed discussion
on the excitation spectrum.Comment: 8 page
Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings
Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal
barrier coatings have been developed via low activity chemical vapor deposition and high activity
pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on
NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed
when switching processes. The structural evolution of each coating at various stages of the
fabrication process has been and subsequent cyclic oxidation is presented, and the relevant
interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of
these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the
formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in
need of further improvement in both cases
Physical properties of FeSeTe single crystals grown under different conditions
We report on structural, magnetic, conductivity, and thermodynamic studies of
FeSeTe single crystals grown by self-flux and Bridgman methods.
The samples were prepared from starting materials of different purity at
various temperatures and cooling rates. The lowest values of the susceptibility
in the normal state, the highest transition temperature of 14.5 K, and
the largest heat-capacity anomaly at were obtained for pure (oxygen-free)
samples. The critical current density of A/cm (at 2
K) achieved in pure samples is attributed to intrinsic inhomogeneity due to
disorder at the cation and anion sites. The impure samples show increased
up to A/cm due to additional pinning centers of
FeO. The upper critical field of kOe is estimated
from the resistivity study in magnetic fields parallel to the \emph{c}-axis.
The anisotropy of the upper critical field reaches a value at . Extremely low values of the residual Sommerfeld coefficient for pure
samples indicate a high volume fraction of the superconducting phase (up to
97%). The electronic contribution to the specific heat in the superconducting
state is well described within a single-band BCS model with a temperature
dependent gap K. A broad cusp-like anomaly in the electronic
specific heat of samples with suppressed bulk superconductivity is ascribed to
a splitting of the ground state of the interstitial Fe ions. This
contribution is fully suppressed in the ordered state in samples with bulk
superconductivity.Comment: 11 pages, 11 figures, 3 table
A Unified Algebraic Approach to Few and Many-Body Correlated Systems
The present article is an extended version of the paper {\it Phys. Rev.} {\bf
B 59}, R2490 (1999), where, we have established the equivalence of the
Calogero-Sutherland model to decoupled oscillators. Here, we first employ the
same approach for finding the eigenstates of a large class of Hamiltonians,
dealing with correlated systems. A number of few and many-body interacting
models are studied and the relationship between their respective Hilbert
spaces, with that of oscillators, is found. This connection is then used to
obtain the spectrum generating algebras for these systems and make an algebraic
statement about correlated systems. The procedure to generate new solvable
interacting models is outlined. We then point out the inadequacies of the
present technique and make use of a novel method for solving linear
differential equations to diagonalize the Sutherland model and establish a
precise connection between this correlated system's wave functions, with those
of the free particles on a circle. In the process, we obtain a new expression
for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having
Laughlin wave function as the ground-state and point out the natural emergence
of the underlying linear symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review
A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions
The standard formulation of a massive Abelian vector field in
dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in
its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term.
In this latter model, we still have a massive vector field, but now the
interaction with a charged spinor field is renormalizable (as opposed to super
renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg
auxiliary scalar field decouples from the vector field. The one-loop spinor
self energy is computed using operator regularization, a technique which
respects the three dimensional character of the antisymmetric tensor
. This method is used to evaluate the vector self
energy to two-loop order; it is found to vanish showing that the beta function
is zero to two-loop order. The canonical structure of the model is examined
using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of
relationship to previous wor
Bulk inflaton shadows of vacuum gravity
We introduce a -dimensional vacuum description of five-dimensional
bulk inflaton models with exponential potentials that makes analysis of
cosmological perturbations simple and transparent. We show that various
solutions, including the power-law inflation model recently discovered by
Koyama and Takahashi, are generated from known -dimensional vacuum
solutions of pure gravity. We derive master equations for all types of
perturbations, and each of them becomes a second order differential equation
for one master variable supplemented by simple boundary conditions on the
brane. One exception is the case for massive modes of scalar perturbations. In
this case, there are two independent degrees of freedom, and in general it is
difficult to disentangle them into two separate sectors.Comment: 22 pages, 4 figures, revtex; v2: references adde
- …