385 research outputs found

    Point Cloud Self-supervised Learning via 3D to Multi-view Masked Autoencoder

    Full text link
    In recent years, the field of 3D self-supervised learning has witnessed significant progress, resulting in the emergence of Multi-Modality Masked AutoEncoders (MAE) methods that leverage both 2D images and 3D point clouds for pre-training. However, a notable limitation of these approaches is that they do not fully utilize the multi-view attributes inherent in 3D point clouds, which is crucial for a deeper understanding of 3D structures. Building upon this insight, we introduce a novel approach employing a 3D to multi-view masked autoencoder to fully harness the multi-modal attributes of 3D point clouds. To be specific, our method uses the encoded tokens from 3D masked point clouds to generate original point clouds and multi-view depth images across various poses. This approach not only enriches the model's comprehension of geometric structures but also leverages the inherent multi-modal properties of point clouds. Our experiments illustrate the effectiveness of the proposed method for different tasks and under different settings. Remarkably, our method outperforms state-of-the-art counterparts by a large margin in a variety of downstream tasks, including 3D object classification, few-shot learning, part segmentation, and 3D object detection. Code will be available at: https://github.com/Zhimin-C/Multiview-MA

    Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites

    Get PDF
    Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 minutes) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 hours) was 4.2 MPa·m1/2, whereas that using the SPS process was 6.5 MPa·m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01Ω•m, whereas those using the SPS process were 842 HV, 99.1%, 0.002Ω•m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time

    Double Graphs Regularized Multi-view Subspace Clustering

    Full text link
    Recent years have witnessed a growing academic interest in multi-view subspace clustering. In this paper, we propose a novel Double Graphs Regularized Multi-view Subspace Clustering (DGRMSC) method, which aims to harness both global and local structural information of multi-view data in a unified framework. Specifically, DGRMSC firstly learns a latent representation to exploit the global complementary information of multiple views. Based on the learned latent representation, we learn a self-representation to explore its global cluster structure. Further, Double Graphs Regularization (DGR) is performed on both latent representation and self-representation to take advantage of their local manifold structures simultaneously. Then, we design an iterative algorithm to solve the optimization problem effectively. Extensive experimental results on real-world datasets demonstrate the effectiveness of the proposed method

    Multi-task unscented Kalman inversion (MUKI): a derivative-free joint inversion framework and its application to joint inversion of geophysical data

    Full text link
    In the geophysical joint inversion, the gradient and Bayesian Markov Chain Monte Carlo (MCMC) sampling-based methods are widely used owing to their fast convergences or global optimality. However, these methods either require the computation of gradients and easily fall into local optimal solutions, or cost much time to carry out the millions of forward calculations in a huge sampling space. Different from these two methods, taking advantage of the recently developed unscented Kalman method in computational mathematics, we extend an iterative gradient-free Bayesian joint inversion framework, i.e., Multi-task unscented Kalman inversion (MUKI). In this new framework, information from various observations is incorporated, the model is iteratively updated in a derivative-free way, and a Gaussian approximation to the posterior distribution of the model parameters is obtained. We apply the MUKI to the joint inversion of receiver functions and surface wave dispersion, which is well-established and widely used to construct the crustal and upper mantle structure of the earth. Based on synthesized and real data, the tests demonstrate that MUKI can recover the model more efficiently than the gradient-based method and the Markov Chain Monte Carlo method, and it would be a promising approach to resolve the geophysical joint inversion problems.Comment: 13 pages, 4 figure

    The dependence of Ni-Fe bioxide composites nanoparticles on the FeCl2 solution used

    Get PDF
    BACKGROUND: Ni(2)O(3)- γ-Fe(2)O(3) composite nanoparticles coated with a layer of 2FeCl(3)·5H(2)O can be prepared by co-precipitation and processing in FeCl(2) solution. Using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) diffraction techniques, the dependence of the preparation on the concentration of the FeCl(2) treatment solution is revealed. RESULTS: The magnetization of the as-prepared products varied non-monotonically as the FeCl(2) concentration increased from 0.020 M to 1.000 M. The Experimental results show that for the composite nanoparticles, the size of the γ-Fe(2)O(3) phase is constant at about 8 nm, the Ni(2)O(3) phase decreased and the 2FeCl(3)·5H(2)O phase increased with increasing concentration of FeCl(2) solution. The magnetization of the as-prepared products mainly results from the γ-Fe(2)O(3) core, and the competition between the reduction of the Ni(2)O(3) phase with the increase of the 2FeCl(3)·5H(2)O phase resulted in the apparent magnetization varying non-monotonically. CONCLUSIONS: When the concentration of FeCl(2) treatment solution did not exceed 0.100 M, the products are spherical nanoparticles of size about 11 nm; their magnetization increased monotonically with increasing the concentration of FeCl(2) solution due to the decreasing proportion of Ni(2)O(3) phase

    Experimental and theoretical analysis of microstructural evolution and deformation behaviors of CuW composites during equal channel angular pressing

    Get PDF
    CuW composites were synthesized using an equal channel angular pressing (ECAP) technique. Microstructural evolution during sintering process was investigated using both optical microscopy and transmission electron microscopy (TEM), and their deformation mechanisms were studied using finite element analysis (FEA). Results showed severe plastic deformation of the CuW composites and effective refinement of W grains after the ECAP process. TEM observation revealed that the ECAP process resulted in lamellar bands with high densities dislocations inside the composites. Effects of extrusion temperature and extrusion angles on stress-strain relationship and sizes of deformation zones after the ECAP process were investigated both theoretically and experimentally. When the extrusion angle was 90°, a maximum equivalent stress of ~1001 MPa was obtained when the extrusion test was done at room temperature of 22 °C, and this value was lower than compression strength of the CuW composites (1105.43 MPa). The maximum equivalent strains were varied between 0.5 and 0.7. However, when the extrusion temperature was increased to 550 °C and further to 900 °C, the maximum equivalent stresses were decreased sharply, with readings of 311 MPa and 68 MPa, respectively. When the extrusion angle was increased to 135°, the maximum equivalent stresses were found to be 716.9 MPa, 208 MPa, and 32 MPa for the samples extruded at temperatures of 22 °C, 550 °C and 900 °C, respectively. Simultaneously, the maximum equivalent strains were decreased to 0.2–0.4. Furthermore, results showed that the maximum equivalent stress was located on the sample's external surface and the stress values were gradually decreased from the surface to the center of samples, and the magnitudes of plastic deformation zones at the surface were much larger than those at the central part of the sintered samples. FEA simulation results were in good agreements with experimentally measured ones

    The Sense of Hope and Future Between Chinese Students and Tanzanian Students

    Get PDF
    A sense of hope and aspirations for the future are often conceptualized as components of resilience for undergraduate students. However, less is known about the factors that may influence how these undergraduate students develop their sense of hope and future and how those aspirations may impact their experiences after school. The main objective of this study is to examine the sense of hope and future between Chinese and Tanzanian students. Specifically, the study examines the sense of hope of Chinese students and Tanzanian students, investigates the future of Chinese students and Tanzanian students, and compares the sense of hope and the future of Chinese students and Tanzanian students. The study adopted a non-experimental correlational research design with mixed methods of both quantitative and qualitative data along with purposive sampling technique and simple random sampling technique to select 21 Tanzanian university students and 24 Chinese university students from each country; this, therefore, gave an overall total of 45 participants. The instrument (Questionnaire on Sense of Hope and Future between Chinese Students and Tanzanian Students) was developed and used for the study. The study's findings revealed that Chinese and Tanzanian students had complete confidence in the future, and there is a high sense of hope between Chinese students and Tanzanian students. The findings also showed that Chinese and Tanzanian students energetically pursued their goals, and there was a high sense of hope between them. The findings revealed that the present ideal situation determined the future of Chinese and Tanzanian students; there is a high sense of future between Chinese and Tanzanian students. The findings again revealed a high sense of future between Chinese and Tanzanian students. The findings lastly indicated that there ‎is a significant difference ‎ between the sense of hope and the future of Chinese students and the sense of hope and the future of Tanzanian students. The sense of hope and future among Chinese students is higher than that among Tanzanian students, yet there is a positive sense of hope and future between Chinese students and Tanzanian students. Some of the study's implications are creating awareness of the future among Chinese and Tanzanian students. Parents in both China and Tanzania need to become conscious of the sense of hope and future of their children and how these children can be affected. Government parastatals should enable proper planning by the stakeholders for these youths. This study finally has implications on how the policy documents were distributed to operators through school authorities, the government, the Ministry of Education, online, the board of education, colleagues, and the local Inspectorate of Education (LIE) bought from the seminar. DOI: 10.7176/JEP/14-34-04 Publication date: December 31st 202
    corecore