963 research outputs found

    Text Region Multiple Information Perception Network for Scene Text Detection

    Full text link
    Segmentation-based scene text detection algorithms can handle arbitrary shape scene texts and have strong robustness and adaptability, so it has attracted wide attention. Existing segmentation-based scene text detection algorithms usually only segment the pixels in the center region of the text, while ignoring other information of the text region, such as edge information, distance information, etc., thus limiting the detection accuracy of the algorithm for scene text. This paper proposes a plug-and-play module called the Region Multiple Information Perception Module (RMIPM) to enhance the detection performance of segmentation-based algorithms. Specifically, we design an improved module that can perceive various types of information about scene text regions, such as text foreground classification maps, distance maps, direction maps, etc. Experiments on MSRA-TD500 and TotalText datasets show that our method achieves comparable performance with current state-of-the-art algorithms.Comment: Accepted to ICASSP 202

    BPDO:Boundary Points Dynamic Optimization for Arbitrary Shape Scene Text Detection

    Full text link
    Arbitrary shape scene text detection is of great importance in scene understanding tasks. Due to the complexity and diversity of text in natural scenes, existing scene text algorithms have limited accuracy for detecting arbitrary shape text. In this paper, we propose a novel arbitrary shape scene text detector through boundary points dynamic optimization(BPDO). The proposed model is designed with a text aware module (TAM) and a boundary point dynamic optimization module (DOM). Specifically, the model designs a text aware module based on segmentation to obtain boundary points describing the central region of the text by extracting a priori information about the text region. Then, based on the idea of deformable attention, it proposes a dynamic optimization model for boundary points, which gradually optimizes the exact position of the boundary points based on the information of the adjacent region of each boundary point. Experiments on CTW-1500, Total-Text, and MSRA-TD500 datasets show that the model proposed in this paper achieves a performance that is better than or comparable to the state-of-the-art algorithm, proving the effectiveness of the model.Comment: Accepted to ICASSP 202

    Application of Fireproof Coating for New Energy Vehicle Battery Pack

    Get PDF
    In the development process of new energy vehicles, the battery pack is one of the key parts, and the safety of the battery pack has always been an important factor affecting the application range and market sales of new energy vehicles. In order to improve the safety of battery packs, fireproof coatings are widely used on the surface of battery packs. This paper introduces the application of fireproof coatings in new energy vehicles by analyzing the composition and function of fireproof coatings

    Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning across Languages

    Full text link
    Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths, thus promoting reasoning accuracy and attracting increasing attention. Specifically, zero-shot CoT achieves remarkable improvements in a wide range of reasoning tasks by simply instructing the LLM with the prompt "Let's think step by step!". Despite the success of zero-shot CoT, the existing zero-shot prompting techniques remain limited to a single language, making it challenging to generalize to other languages and hindering global development. In this work, we introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages. Specifically, CLP consists of two main components: (1) cross-lingual alignment prompting and (2) task-specific solver prompting. The cross-lingual alignment prompting is responsible for aligning representations across different languages, whereas the task-specific solver prompting is used to generate the final chain of thoughts and results for the reasoning task. In addition, we further introduce cross-lingual self-consistent prompting (CLSP) to ensemble different reasoning paths across languages. Our experimental evaluations on several benchmarks demonstrate that CLP and CLSP significantly outperform the existing prompting methods and achieve state-of-the-art performance. We hope this work will inspire further breakthroughs in cross-lingual CoT.Comment: Accepted at EMNLP2023 Main Conferenc

    A Preliminary Evaluation of ChatGPT for Zero-shot Dialogue Understanding

    Full text link
    Zero-shot dialogue understanding aims to enable dialogue to track the user's needs without any training data, which has gained increasing attention. In this work, we investigate the understanding ability of ChatGPT for zero-shot dialogue understanding tasks including spoken language understanding (SLU) and dialogue state tracking (DST). Experimental results on four popular benchmarks reveal the great potential of ChatGPT for zero-shot dialogue understanding. In addition, extensive analysis shows that ChatGPT benefits from the multi-turn interactive prompt in the DST task but struggles to perform slot filling for SLU. Finally, we summarize several unexpected behaviors of ChatGPT in dialogue understanding tasks, hoping to provide some insights for future research on building zero-shot dialogue understanding systems with Large Language Models (LLMs).Comment: Technical Repor

    CMFN: Cross-Modal Fusion Network for Irregular Scene Text Recognition

    Full text link
    Scene text recognition, as a cross-modal task involving vision and text, is an important research topic in computer vision. Most existing methods use language models to extract semantic information for optimizing visual recognition. However, the guidance of visual cues is ignored in the process of semantic mining, which limits the performance of the algorithm in recognizing irregular scene text. To tackle this issue, we propose a novel cross-modal fusion network (CMFN) for irregular scene text recognition, which incorporates visual cues into the semantic mining process. Specifically, CMFN consists of a position self-enhanced encoder, a visual recognition branch and an iterative semantic recognition branch. The position self-enhanced encoder provides character sequence position encoding for both the visual recognition branch and the iterative semantic recognition branch. The visual recognition branch carries out visual recognition based on the visual features extracted by CNN and the position encoding information provided by the position self-enhanced encoder. The iterative semantic recognition branch, which consists of a language recognition module and a cross-modal fusion gate, simulates the way that human recognizes scene text and integrates cross-modal visual cues for text recognition. The experiments demonstrate that the proposed CMFN algorithm achieves comparable performance to state-of-the-art algorithms, indicating its effectiveness.Comment: Accepted to ICONIP 202
    corecore