52 research outputs found

    Development of ISO Standard for Real-Time Polymerase Chain Reaction Detection of Turkey-Derived Material

    Get PDF
    In this study, the specific fragment of turkey chromosome Z-DNA sequence was selected as the target sequence for turkey-derived material detection. A real-time polymerase chain reaction (real-time PCR) method was established, which had good interspecies specificity and interspecies consistency. The target sequence was cloned into the plasmid pUC57, and after being diluted to different concentrations, the plasmid was tested by real-time PCR. The absolute detection limit of this method was 5 copies/PCR reaction. An international collaborative validation trial was conducted to validate this method. The results showed that the false positive and negative rates of the proposed method were both 0%, and the absolute detection limit was 5 copies/PCR reaction. The results of qualitative analysis of the diluted plasmid showed that the inter-laboratory standard deviation was 0.30, less than the maximum permitted value of 1; at a detection probability of 95%, the absolute detection limit was 3.2 copies/PCR reaction, less than the maximum allowable value of 20 copies/PCR reaction. Based on voting results and reviewers’ comments, this method was approved by the International Organization for Standardization (ISO) as an international standard method (ISO/TS 20224-8:2022)

    Towards a high-intensity muon source at CiADS

    Full text link
    The proposal of a high-intensity muon source driven by the CiADS linac, which has the potential to be one of the state-of-the-art facilities, is presented in this paper. We briefly introduce the development progress of the superconducting linac of CiADS. Then the consideration of challenges related to the high-power muon production target is given and the liquid lithium jet muon production target concept is proposed, for the first time. The exploration of the optimal target geometry for surface muon production efficiency and the investigation into the performance of liquid lithium jet target in muon rate are given. Based on the comparison between the liquid lithium jet target and the rotation graphite target, from perspectives of surface muon production efficiency, heat processing ability and target geometry compactness, the advantages of the new target concept are demonstrated and described comprehensively. The technical challenges and the feasibility of the free-surface liquid lithium target are discussed

    Antidepressant Effects of Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex of Parkinson's Disease Patients With Depression: A Meta-Analysis

    Get PDF
    Objective: The purpose of this meta-analysis was to investigate the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC) of patients with Parkinson's disease (PD) and to determine the optimal rTMS parameters, such as the intensity, frequency and the delivered pattern of rTMS stimulation.Methods: EMBASE, PubMed, Web of Science, MEDLINE, and Cochrane data bases were researched for papers published before March 12, 2018. Studies investigating the anti-depression effects of rTMS over PFC in patients with PD were considered. The main outcomes of pre- and post-rTMS treatment as well as score changes were all extracted. The mean effect size was estimated by calculating the standardized mean difference (SMD) with 95% confidence interval (CI) by using fixed or random effect models as appropriate.Results: Nine studies containing 137 PD patients with depression were included. The pooled results showed significant pre-post anti-depressive effects of rTMS over PFC in PD patients with depression (SMD = −0.80, P < 0.00001). The subgroup analyses of stimulation intensity, frequencies, and models also revealed significant effects (Intensities: 90% RMT: SMD = −1.16, P = 0.0006; >100% RMT: SMD = −0.82, P < 0.0001. Frequencies: < 1.0 Hz: SMD = −0.83, P = 0.03; 5.0 Hz: SMD = −1.10, P < 0.0001; ≥10.0 Hz: SMD = −0.55, P = 0.02. Models: Continuous: SMD = −0.79, P < 0.0001; Discontinuous: SMD = −0.84, P = 0.02). But the results of the studies with place-controlled designs were not significant (Overall: SMD = −0.27, P = 0.54. Intensities: 90% RMT: SMD = 0.27, P = 0.68; 100% RMT: SMD = −0.32, P = 0.33. Frequencies: 5.0 Hz: SMD = −0.87, P = 0.10; ≥10.0 Hz: SMD = 0.27, P = 0.66. Models: Continuous: SMD = −0.28, P = 0.68; Discontinuous: SMD = −0.32, P = 0.33). The greater effect sizes of rTMS with 90% RMT, 5.0 Hz in discontinuous days can be observed rather than the other parameters in both kinds of analyses across study design.Conclusions: rTMS may have a significant positive pre-post anti-depressive effect over PFC on patients with depression, especially by using 5.0 Hz frequency with 90% RMT intensity in discontinuous days, which may produce better effects than other parameters. The real effect, though, was not different from that of the placebo. Future studies with larger sample sizes and high-quality studies are needed to further corroborate our results and to identify the optimal rTMS protocols

    Combined Pitch and Trailing Edge Flap Control for Load Mitigation of Wind Turbines

    No full text
    Using active control methods for load mitigation in wind turbines could greatly reduce the cost of per kilowatt hour of wind power. In this work, the combined pitch and trailing edge flap control (CPFC) for load mitigation of wind turbines is investigated. The CPFC includes an individual pitch control (IPC) loop and a trailing edge flap control (TEFC) loop, which are combined by a load frequency division control algorithm. The IPC loop is mainly used to mitigate the low frequency loads, and the TEFC loop is mainly used to mitigate the high frequency loads. The CPFC adopts both an azimuth angle feed-forward and a loads feedback control strategy. The azimuth angle feed-forward control strategy should mitigate the asymmetrical loads caused by observable disturbances. and the loads feedback control strategy should decrease asymmetrical loads by closed loop control. A simulation is carried out on the joint platform of FAST and MATLAB. The simulation results show that the damage equivalent load (DEL) of blade root out-of-plane bending moment is reduced by 53.7% while using CPFC, compared to collective pitch control (CPC); and the standard deviation of blade tip out-of-plane deflection is reduced by 50.2% while using CPFC, compared to CPC. The results demonstrate that the CPFC can mitigate the fatigue loads of wind turbines as anticipated

    Inclined granular flow in a narrow chute

    No full text
    In this paper we presents a detailed description of granular flow down a flat, narrow chute using discrete element method simulations, with emphasis on the influence of sidewalls on the flow. The overall phase diagram is provided and it is found that there are four flow regimes (no flow, bulk flow, surface flow, and gas flow). The H̃ stop curve is very complicated and quite different from that in the case without sidewalls. The effective friction coefficient μw \mu_{{\rm w}} increases with pile height H̃ and a surface flow occurs when the inclination angle θ \theta exceeds a critical value. The profile of μw \mu_{{\rm w}} shows that the μ(I) \mu (I) rheology is valid in boundary layers. Furthermore, μw \mu_{{\rm w}} increases with the velocity of particles and there is a saturation to a nonzero value in static heap. For small H̃, the static heap vanishes and there is a bulk flow. A similarity between basal particles and sidewall particles indicates a universal role of the boundaries. In this bulk flow, there is a transition of the velocity profile with wall friction μps \mu_{{\rm ps}}. When μps \mu_{{\rm ps}} is large, the velocity is linear and decreases with increasing height. With small μps \mu_{{\rm ps}}, the velocity is nonlinear and the flow rate is roughly proportional to H̃ 3/2

    A Vibration Control Method Using MRASSA for 1/4 Semi-Active Suspension Systems

    No full text
    The multi-subpopulation refracted adaptive salp swarm algorithm (MRASSA) was proposed for vibration control in 1/4 semi-active suspension systems. The MRASSA algorithm was applied to optimize suspension damping performance by addressing the local optimal and slow convergence speed challenge of the standard salp swarm algorithm for two-degrees-of-freedom 1/4 semi-active suspension systems. The developed MRASSA contains three key improvements: (1) partitioning multi-subpopulation; (2) applying refracted opposition-based learning; (3) adopting adaptive factors. In order to verify the performance of the MRASSA approach, a 1/4 suspension Simulink model was developed for simulation experiments. To further validate the results, a physical platform was built to test the applicability of the simulation model. The optimized suspension performance of MRASSA was also compared with three optimized models, namely, standard SSA, Single-Objective Firefly (SOFA) and Whale-optimized Fuzzy-fractional Order (WOAFFO). The experimental results showed that MRASSA outperformed the other models, achieving better suspension performance in complex environments such as a random road with a speed of 60 km/h. Compared to passive suspension, MRASSA led to a 41.15% reduction in sprung mass acceleration and a 15–25% reduction compared to other models. Additionally, MRASSA had a maximum 20% reduction in suspension dynamic deflection and dynamic load. MRASSA also demonstrated a faster convergence speed, finding the optimal solution faster than the other algorithms. These results indicate that MRASSA is superior to other models and has potential as a valuable tool for suspension performance optimization

    A retrospective study of 134 patients with cervical region Kikuchi–Fujimoto disease

    No full text
    Abstract Background To explore the clinical and laboratory features, therapy and prognosis of Kikuchi–Fujimoto disease (KFD) in the cervical region. Methods We retrospectively reviewed the medical records of 134 patients who were diagnosed and treated with KFD from January 2000 to May 2022 in Fujian Medical University Union Hospital (Fujian, China). Their clinical characteristics, affected lymph node size, imaging examinations, and laboratory study results were analyzed. Results The mean patient age was 24.9 years, and the male–female ratio was 1:1.73. Fever (55.2%, n = 74) was the most common clinical manifestation. Leukopenia (49.3%) was the commonest reported laboratory abnormality. A majority (65.7%) of the 134 patients presented with bilateral nodal involvement. Conclusion KFD should be considered as a possible diagnosis in a female patient under the age of 30 presenting with cervical lymphadenopathy, fever, leukopenia, and elevated LDH. Level of Evidence 4

    Analysis of Annular Pressure Generation Mechanism and Research on Safety Evaluation

    No full text
    With the rapid increase of seasonal heating gas consumption in winter in the Beijing-Tianjin-Hebei region, the existing gas storage scale and injection and production well network in the central Hebei region can hardly meet the demand of storage capacity utilization and gas recovery. Therefore, the effective utilization of old Wells has become the goal of gas storage construction. However, the old Wells that have been put back into production are mostly converted from depleted reservoirs, which have different degrees of annular pressure problems. Through investigation and investigation, it is found that there are many factors causing annular zoning pressure. By analyzing the properties of Wells with high sulfur content and high temperature and pressure, this paper studies the mechanism of causing annular zoning pressure, and puts forward the safety management method, so as to make the safety evaluation of annular zoning pressure more comprehensive
    corecore