67 research outputs found
Advanced glycation end products and age-related diseases in the general population
In this thesis, epidemiological, nutritional, and gut microbiome related studies are presented to illustrate the relation of advanced glycation end products (AGEs) with age-related diseases. The studies are embedded in the Rotterdam Study, a cohort of the Dutch general population of middle-aged and elderly adults. The amount of skin AGEs measured as SAF was used as a representative of the long-term AGE burden. Chapter 1 gives an overview of the whole thesis (Section 1.1) and gives a brief introduction to AGEs and their implications in disease pathophysiology. Chapter 2 focuses on the interplay of AGEs in the skin and clinical and lifestyle factors, and Chapter 3 concerns the link of skin and dietary AGEs with age-related diseases. Chapter 4 discusses the interpretations and implications of the findings, major methodological considerations, and pressing questions for future research
Advanced glycation end products and age-related diseases in the general population
In this thesis, epidemiological, nutritional, and gut microbiome related studies are presented to illustrate the relation of advanced glycation end products (AGEs) with age-related diseases. The studies are embedded in the Rotterdam Study, a cohort of the Dutch general population of middle-aged and elderly adults. The amount of skin AGEs measured as SAF was used as a representative of the long-term AGE burden. Chapter 1 gives an overview of the whole thesis (Section 1.1) and gives a brief introduction to AGEs and their implications in disease pathophysiology. Chapter 2 focuses on the interplay of AGEs in the skin and clinical and lifestyle factors, and Chapter 3 concerns the link of skin and dietary AGEs with age-related diseases. Chapter 4 discusses the interpretations and implications of the findings, major methodological considerations, and pressing questions for future research
The AGE-RAGE axis associates with chronic pulmonary diseases and smoking in the Rotterdam study
Background: Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. Methods: In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. Results: SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (β=-3.384 [-4.877, -1.892]), DLCOc (β=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (β=-6.362 [-9.055, -3.670]) than non-COPD (β=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (β=-0.550 [-0.909, -0.191]; β=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). Conclusions: Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. Take-home message: Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.</p
The AGE-RAGE axis associates with chronic pulmonary diseases and smoking in the Rotterdam study
Background: Chronic obstructive pulmonary disease (COPD) and asthma associate with high morbidity and mortality. High levels of advanced glycation end products (AGEs) were found in tissue and plasma of COPD patients but their role in COPD and asthma is unclear. Methods: In the Rotterdam Study (n = 2577), AGEs (by skin autofluorescence (SAF)), FEV1 and lung diffusing capacity (DLCOc and DLCOc /alveolar volume [VA]) were measured. Associations of SAF with asthma, COPD, GOLD stage, and lung function were analyzed using logistic and linear regression adjusted for covariates, followed by interaction and stratification analyses. sRAGE and EN-RAGE associations with COPD prevalence were analyzed by logistic regression. Results: SAF associated with COPD prevalence (OR = 1.299 [1.060, 1.591]) but not when adjusted for smoking (OR = 1.106 [0.89, 1.363]). SAF associated with FEV1% predicted (β=-3.384 [-4.877, -1.892]), DLCOc (β=-0.212 [-0.327, -0.097]) and GOLD stage (OR = 4.073, p = 0.001, stage 3&4 versus 1). Stratified, the association between SAF and FEV1%predicted was stronger in COPD (β=-6.362 [-9.055, -3.670]) than non-COPD (β=-1.712 [-3.306, -0.118]). Association of SAF with DLCOc and DLCOc/VA were confined to COPD (β=-0.550 [-0.909, -0.191]; β=-0.065 [-0.117, -0.014] respectively). SAF interacted with former smoking and COPD prevalence for associations with lung function. Lower sRAGE and higher EN-RAGE associated with COPD prevalence (OR = 0.575[0.354, 0.931]; OR = 1.778[1.142, 2.768], respectively). Conclusions: Associations between SAF, lung function and COPD prevalence were strongly influenced by smoking. SAF associated with COPD severity and its association with lung function was more prominent within COPD. These results fuel further research into interrelations and causality between SAF, smoking and COPD. Take-home message: Skin AGEs associated with prevalence and severity of COPD and lung function in the general population with a stronger effect in COPD, calling for further research into interrelations and causality between SAF, smoking and COPD.</p
Learning to Reweight for Graph Neural Network
Graph Neural Networks (GNNs) show promising results for graph tasks. However,
existing GNNs' generalization ability will degrade when there exist
distribution shifts between testing and training graph data. The cardinal
impetus underlying the severe degeneration is that the GNNs are architected
predicated upon the I.I.D assumptions. In such a setting, GNNs are inclined to
leverage imperceptible statistical correlations subsisting in the training set
to predict, albeit it is a spurious correlation. In this paper, we study the
problem of the generalization ability of GNNs in Out-Of-Distribution (OOD)
settings. To solve this problem, we propose the Learning to Reweight for
Generalizable Graph Neural Network (L2R-GNN) to enhance the generalization
ability for achieving satisfactory performance on unseen testing graphs that
have different distributions with training graphs. We propose a novel nonlinear
graph decorrelation method, which can substantially improve the
out-of-distribution generalization ability and compares favorably to previous
methods in restraining the over-reduced sample size. The variables of the graph
representation are clustered based on the stability of the correlation, and the
graph decorrelation method learns weights to remove correlations between the
variables of different clusters rather than any two variables. Besides, we
interpose an efficacious stochastic algorithm upon bi-level optimization for
the L2R-GNN framework, which facilitates simultaneously learning the optimal
weights and GNN parameters, and avoids the overfitting problem. Experimental
results show that L2R-GNN greatly outperforms baselines on various graph
prediction benchmarks under distribution shifts
Advanced glycation end products measured by skin autofluorescence and subclinical cardiovascular disease:the Rotterdam Study
Background: Advanced glycation end products (AGEs) have been linked to cardiovascular disease (CVD), especially coronary heart disease (CHD), but their role in CVD pathogenesis remains unclear. Therefore, we investigated cross-sectional associations of skin AGEs with subclinical atherosclerosis, arterial stiffness, and hypertension after confirming their relation with CHD. Methods: In the population-based Rotterdam Study, skin AGEs were measured as skin autofluorescence (SAF). Prevalent MI was obtained from digital medical records. Carotid plaques, carotid intima-media thickness (IMT), coronary artery calcification (CAC), pulse wave velocity (PWV), and hypertension were assessed. Associations of SAF with endophenotypes were investigated in logistic and linear regression models adjusting for common cardiovascular risk factors. Effect modification by sex, diabetes mellitus, and chronic kidney disease (CKD) was tested. Results: 3001 participants were included (mean age 73 (SD 9) years, 57% women). One unit higher SAF was associated with the presence of carotid plaques (OR 1.2 (0.92, 1.57)), a higher max IMT (0.08 SD (0.01, 0.15)), higher CAC (OR 2.2 (1.39, 3.48)), and PWV (0.09 SD (0.01, 0.16)), but not with hypertension (OR 0.99 (0.81, 1.21)). The associations with endophenotypes were more pronounced in men and participants with diabetes or CKD with significant interactions. Conclusions: Previously documented associations between SAF and CVD, also found in our study, may be explained by the endophenotypes atherosclerosis and arterial stiffness, especially in men and individuals with diabetes or CKD, but not by hypertension. Longitudinal studies are needed to replicate these findings and to test if SAF is an independent risk factor or biomarker of CVD. Trial registration: The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831.</p
Skin autofluorescence, reflecting accumulation of advanced glycation end products, and the risk of dementia in a population-based cohort
Conditions such as hyperglycemia and oxidative stress lead to the formation of advanced glycation end products (AGEs), which are harmful compounds that have been implicated in dementia. Within the Rotterdam Study, we measured skin AGEs as skin autofluorescence, reflecting long-term accumulation of AGEs, and determined their association with the risk of dementia and with brain magnetic resonance imaging (MRI) measures. Skin autofluorescence was measured between 2013 and 2016 in 2922 participants without dementia. Of these, 1504 also underwent brain MRI, on which measures of brain atrophy and cerebral small vessel disease were assessed. All participants were followed for the incidence of dementia until 2020. Of 2922 participants (mean age 72.6 years, 57% women), 123 developed dementia. Higher skin autofluorescence (per standard deviation) was associated with an increased risk of dementia (hazard ratio 1.21 [95% confidence interval 1.01–1.46]) and Alzheimer’s disease (1.19 [0.97–1.47]), independently of age and other studied potential confounders. Stronger effects were seen in apolipoprotein E (APOE) ε4 carriers (1.34 [0.98–1.82]) and in participants with diabetes (1.35 [0.94–1.94]). Participants with higher skin autofluorescence levels also had smaller total brain volumes and smaller hippocampus volumes on MRI, and they had more often lacunes. These results suggest that AGEs may be involved in dementia pathophysiology.</p
Advanced glycation end products measured by skin autofluorescence and subclinical cardiovascular disease:the Rotterdam Study
Background: Advanced glycation end products (AGEs) have been linked to cardiovascular disease (CVD), especially coronary heart disease (CHD), but their role in CVD pathogenesis remains unclear. Therefore, we investigated cross-sectional associations of skin AGEs with subclinical atherosclerosis, arterial stiffness, and hypertension after confirming their relation with CHD. Methods: In the population-based Rotterdam Study, skin AGEs were measured as skin autofluorescence (SAF). Prevalent MI was obtained from digital medical records. Carotid plaques, carotid intima-media thickness (IMT), coronary artery calcification (CAC), pulse wave velocity (PWV), and hypertension were assessed. Associations of SAF with endophenotypes were investigated in logistic and linear regression models adjusting for common cardiovascular risk factors. Effect modification by sex, diabetes mellitus, and chronic kidney disease (CKD) was tested. Results: 3001 participants were included (mean age 73 (SD 9) years, 57% women). One unit higher SAF was associated with the presence of carotid plaques (OR 1.2 (0.92, 1.57)), a higher max IMT (0.08 SD (0.01, 0.15)), higher CAC (OR 2.2 (1.39, 3.48)), and PWV (0.09 SD (0.01, 0.16)), but not with hypertension (OR 0.99 (0.81, 1.21)). The associations with endophenotypes were more pronounced in men and participants with diabetes or CKD with significant interactions. Conclusions: Previously documented associations between SAF and CVD, also found in our study, may be explained by the endophenotypes atherosclerosis and arterial stiffness, especially in men and individuals with diabetes or CKD, but not by hypertension. Longitudinal studies are needed to replicate these findings and to test if SAF is an independent risk factor or biomarker of CVD. Trial registration: The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831.</p
Skin autofluorescence, reflecting accumulation of advanced glycation end products, and the risk of dementia in a population-based cohort
Conditions such as hyperglycemia and oxidative stress lead to the formation of advanced glycation end products (AGEs), which are harmful compounds that have been implicated in dementia. Within the Rotterdam Study, we measured skin AGEs as skin autofluorescence, reflecting long-term accumulation of AGEs, and determined their association with the risk of dementia and with brain magnetic resonance imaging (MRI) measures. Skin autofluorescence was measured between 2013 and 2016 in 2922 participants without dementia. Of these, 1504 also underwent brain MRI, on which measures of brain atrophy and cerebral small vessel disease were assessed. All participants were followed for the incidence of dementia until 2020. Of 2922 participants (mean age 72.6 years, 57% women), 123 developed dementia. Higher skin autofluorescence (per standard deviation) was associated with an increased risk of dementia (hazard ratio 1.21 [95% confidence interval 1.01–1.46]) and Alzheimer’s disease (1.19 [0.97–1.47]), independently of age and other studied potential confounders. Stronger effects were seen in apolipoprotein E (APOE) ε4 carriers (1.34 [0.98–1.82]) and in participants with diabetes (1.35 [0.94–1.94]). Participants with higher skin autofluorescence levels also had smaller total brain volumes and smaller hippocampus volumes on MRI, and they had more often lacunes. These results suggest that AGEs may be involved in dementia pathophysiology.</p
- …