154 research outputs found
An improved memory prediction strategy for dynamic multiobjective optimization
The file attached to this record is the author's final peer reviewed version.In evolutionary dynamic multiobjective optimization (EDMO), the memory strategy and prediction method are considered as effective and efficient methods. To handling dynamic multiobjective problems (DMOPs), this paper studies the behavior of environment change and tries to make use of the historical information appropriately. And then, this paper proposes an improved memory prediction model that uses the memory strategy to provide valuable information to the prediction model to predict the POS of the new environment more accurately. This memory prediction model is incorporated into a multiobjective evolutionary algorithm based on decomposition (MOEA/D). In particular, the resultant algorithm (MOEA/D-MP) adopts a sensor-based method to detect the environment change and find a similar one in history to reuse the information of it in the prediction process. The proposed algorithm is compared with several state-of-the-art dynamic multiobjective evolutionary algorithms (DMOEA) on six typical benchmark problems with different dynamic characteristics. Experimental results demonstrate that the proposed algorithm can effectively tackle DMOPs
Role of neuromedin B and its receptor in the innate immune responses against influenza A virus infection in vitro and in vivo
International audienceAbstractThe peptide neuromedin B (NMB) and its receptor (NMBR) represent a system (NMB/NMBR) of neuromodulation. Here, it was demonstrated that the expression of NMBR in cells or murine lung tissues was clearly upregulated in response to H1N1/PR8 influenza A virus infection. Furthermore, the in vitro and in vivo activities of NMB/NMBR during PR8 infection were investigated. It was observed that A549 cells lacking endogenous NMBR were more susceptible to virus infection than control cells, as evidenced by the increased virus production in the cells. Interestingly, a significant decrease in IFN-α and increased IL-6 expression were observed in these cells. The role of this system in innate immunity against PR8 infection was probed by treating mice with NMB. The NMB-treated mice were less susceptible to virus challenge, as evidenced by increased survival, increased body weight, and decreased viral NP expression compared with the control animals. Additionally, the results showed that exogenous NMB not only enhanced IFN-α expression but also appeared to inhibit the expression of NP and IL-6 in PR8-infected cells and animals. As expected, opposing effects were observed in the NMBR antagonist-treated cells and mice, which further confirmed the effects of NMB. Together, these data suggest that NMB/NMBR may be an important component of the host defence against influenza A virus infection. Thus, these proteins may serve as promising candidates for the development of novel antiviral drugs
Plants Pre-Infested With Viruliferous MED/Q Cryptic Species Promotes Subsequent \u3cem\u3eBemisia tabaci\u3c/em\u3e Infestation
The sweet potato whitefly, Bemisia tabaci, is one of the most invasive insect pests worldwide. The two most destructive whitefly cryptic species are MEAM1/B and MED/Q. Given that MED/Q has replaced MEAM1/B in China and the invasion of MED/Q has coincided with the outbreak of tomato yellow leaf curl virus (TYLCV), we hypothesize that pre-infestation with viruliferous B. tabaci will affect the subsequent host preferences. To test this hypothesis, we (1) conducted bioassays to compare the host preference of viruliferous and non-viruliferous MEAM1/B and MED/Q, respectively, on plants pre-infested with viruliferous and non-viruliferous MEAM1/B and MED/Q; (2) profiled plant volatiles using GC-MS; and (3) functionally characterized chemical cues could potentially modulate B. tabaci-TYLCV-tomato interactions, including ρ-cymene, thujene and neophytadiene, using a Y-tube olfactometer. As a result, plants pre-infested with MEAM1/B whiteflies carrying TYLCV or not, did not attract more or less B or Q whiteflies. Plants pre-infested with non-viruliferous MED/Q resisted MEAM1/B but did not affect MED/Q. However, plants pre-infested with viruliferous MED/Q attracted more whiteflies. Feeding of viruliferous MED/Q reduced the production of ρ-cymene, and induced thujene and neophytadiene. Functionally analyses of these plant volatiles show that ρ-cymene deters while neophytadiene recruits whiteflies. These combined results suggest that pre-infestation with viruliferous MED/Q promotes the subsequent whitefly infestation and induces plant volatile neophytadiene which recruits whiteflies
A novel anti-virulence gene revealed by proteomic analysis in Shigella flexneri 2a
<p>Abstract</p> <p>Background</p> <p><it>Shigella flexneri </it>is a gram-negative, facultative pathogen that causes the majority of communicable bacterial dysenteries in developing countries. The virulence factors of <it>S. flexneri </it>have been shown to be produced at 37 degrees C but not at 30 degrees C. To discover potential, novel virulence-related proteins of <it>S. flexneri</it>, we performed differential in-gel electrophoresis (DIGE) analysis to measure changes in the expression profile that are induced by a temperature increase.</p> <p>Results</p> <p>The ArgT protein was dramatically down-regulated at 37 degrees C. In contrast, the ArgT from the non-pathogenic <it>E. coli </it>did not show this differential expression as in <it>S. flexneri</it>, which suggested that <it>argT </it>might be a potential anti-virulence gene. Competitive invasion assays in HeLa cells and in BALB/c mice with <it>argT </it>mutants were performed, and the results indicated that the over-expression of ArgT<sub>Y225D </sub>would attenuate the virulence of <it>S. flexneri</it>. A comparative proteomic analysis was subsequently performed to investigate the effects of ArgT in <it>S. flexneri </it>at the molecular level. We show that HtrA is differentially expressed among different derivative strains.</p> <p>Conclusion</p> <p>Gene <it>argT </it>is a novel anti-virulence gene that may interfere with the virulence of <it>S. flexneri </it>via the transport of specific amino acids or by affecting the expression of the virulence factor, HtrA.</p
Dynamic and Functional Characteristics of Predominant Species in Industrial Paocai as Revealed by Combined DGGE and Metagenomic Sequencing
The microbial community during the fermentation of industrial paocai, a lactic acid fermented vegetable food, was investigated via combined denaturing gradient gel electrophoresis (DGGE) and metagenomic sequencing. Firmicutes and Proteobacteria were identified as the dominant phyla during the fermentation. DGGE results of the bacterial community analysis showed that many genera were observed during the fermentation of industrial paocai, but the same predominant genus and species were observed: Lactobacillus and Lactobacillus (L.) alimentarius/L. paralimentarius. The abundance of L. alimentarius/L. paralimentarius increased fast during the initial stage of fermentation and approximately remained constant during the later stage. Metagenomic sequencing was used to finally identify the predominant species and their genetic functions. Metabolism was the primary functions of the microbial community in industrial paocai fermentation, including carbohydrate metabolism (CM), overview (OV), amino acid metabolism (AAM), nucleotide metabolism (NM), energy metabolism (EM), etc. The predominant species L. alimentarius and L. paralimentarius were involved in plenty of pathways in metabolism and played different roles in the metabolism of carbohydrate, amino acid, lipid to form flavor compounds during industrial paocai fermentation. This study provided valuable information about the predominant species in industrial paocai and its functional properties, which could enable us to advance our understanding of the fermentation mechanism during fermentation of industrial paocai. Our results will advance the understanding of the microbial roles in the industrial paocai fermentation and provide a theoretical basis for improving the quality of industrial paocai products
Bemisia Tabaci Q Carrying Tomato Yellow Leaf Curl Virus Strongly Suppresses Host Plant Defenses
The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China
Ocean response offshore of Taiwan to super typhoon Nepartak (2016) based on multiple satellite and buoy observations
Multi-satellite and buoy observation data were used to systematically analyze the ocean response offshore of Taiwan to Super Typhoon Nepartak in 2016. The satellite data showed that a high sea surface temperature combined with a thick warm water layer and deep mixed layer provided a good thermal environment for continuous intensification of the typhoon. Two high-resolution buoys (NTU1 and NTU2) moored 375 and 175 km offshore of southeastern Taiwan were used to clarify the typhoon–ocean interaction as the typhoon approached Taiwan. The ocean conditions were similar at the two buoys before the typhoon, and both buoys were on the left side of the typhoon track and suffered similar typhoon factors (e.g., typhoon intensity and translation speed) during its passage. However, the ocean response differed significantly at the two buoys. During the forced period, the entire upper ocean was cooled at NTU1. In contrast, there was a clear three-layer vertical structure at NTU2 consisting of cool surface and deep layers with a warmer layer between the two cool layers. These responses can be attributed to strong upwelling of a cold eddy at NTU1 and vertical mixing at NTU2. These results indicate that, under similar preexisting conditions and typhoon factors, the movement of ocean eddies under typhoon forcing is an unexpected mechanism that results in upwelling and thus needs to be considered when predicting changes in the ocean environment and typhoon intensity
- …