182 research outputs found

    Unbalanced Oxidant-Antioxidant Status: A Potential Therapeutic Target for Coronary Chronic Total Occlusion in Very Old Patients

    Get PDF
    Unbalanced oxidant and antioxidant status played an important role in myocardial infarction. The present study was a clinical trial combined preclinically with targeted agent against cardiovascular injuries and ischemia in vivo model. We tried to confirm the association of unbalanced oxidant and antioxidant status with coronary chronic total occlusion (CTO) in 399 very old patients (80~89 years) and investigated the potential therapeutic value of purified polysaccharide from endothelium corneum gigeriae galli (PECGGp). We analyzed levels of circulating superoxide dismutase 3 (SOD3), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), and malondialdehyde (MDA) in very old patients with coronary CTO. Levels of SOD3, NO, eNOS, and MDA in the cardiac tissue were measured in myocardial infarction rats. Levels of SOD3, eNOS, and NO were lowered (p<0.001) and levels of MDA were increased (p<0.001). PECGGp treatment increased levels of SOD3, eNOS, and NO (p<0.01) in cardiac tissue, while decreasing levels of MDA (p<0.01). PECGGp may suppress unbalanced oxidant and antioxidant status in infarcted myocardium by inhibiting levels of MDA and elevating NO, eNOS, and SOD3 levels. PECGGp could be considered as a potential therapeutic agent for coronary CTO in very old patients

    Characterization of monoclonal antibodies against Muscovy duck reovirus σB protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The σB protein of Muscovy duck reovirus (DRV), one of the major structural proteins, is able to induce neutralizing antibody in ducks, but the monoclonal antibody (MAb) against σB protein has never been characterized.</p> <p>Results</p> <p>Four hybridoma cell lines secreting anti-DRV σB MAbs were obtained, designated 1E5, 2F7, 4E3 and 5D8. Immunoglobulin subclass tests differentiated them as IgG2b (1E5 and 4E3) and IgM (2F7 and 5D8). Dot blot and western blotting assays showed that MAbs reacted with His-σB protein in a conformation-independent manner. Competitive binding assay indicated that the MAbs delineated two epitopes, A and B of σB. Immunofluorescence assay indicated that the four MAbs could specifically bind to Vero cells infected with DRV and σB was distributed diffusely in the cytoplasma of infected cells. MAbs had universal reactivity to all DRVs tested in an antigen-capture enzyme-linked immunosorbent assay.</p> <p>Conclusion</p> <p>Results of this research provide important information about the four monoclonal antibodies and therefore the MAbs may be useful candidate for the development of a MAb capture ELISA for rapid detection of DRVs. In addition, it showed that the σB protein was located in the cytoplasma of infected cells by immunofluorescence assay with MAbs. Virus isolation and RT-PCR are reliable way for detection of DRV infection, but these procedures are laborious, time consuming, and requiring instruments. These obvious diagnosis problems highlight the ongoing demand of rapid, reproducible, and automatic methods for the sensitive detection of DRV.</p

    Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs

    Get PDF
    AbstractNipah virus (NiV), a member of the Paramyxoviridae family, causes deadly encephalitis in humans and huge economic losses to the pig industry. Here, we generated recombinant avirulent Newcastle disease virus (NDV) LaSota strains expressing the NiV G and F proteins respectively (designated as rLa-NiVG and rLa-NiVF), and evaluated their immunogenicity in mice and pigs. Both rLa-NiVG and rLa-NiVF displayed growth properties similar to those of LaSota virus in chicken eggs. Co-infection of rLa-NiVG and rLa-NiVF caused marked syncytia formation, while intracerebral co-inoculation of these viruses in mice showed they were safe in at least one mammalian species. Animal immunization studies showed rLa-NiVG and rLa-NiVF induced NiV neutralizing antibody responses in mice and pigs, and F protein-specific CD8+ T cell responses in mice. Most importantly, rLa-NiVG and rLa-NiVF administered alone or together, induced a long-lasting neutralizing antibody response in pigs. Recombinant rLa-NiVG/F thus appear to be promising NiV vaccine candidates for pigs and potentially humans

    Evolution of H9N2 influenza viruses from domestic poultry in Mainland China

    Get PDF
    AbstractH9N2 viruses have circulated in domestic poultry in Mainland China since 1994, and an inactivated vaccine has been used in chickens to control the disease since 1998. The present study analyzed 27 H9N2 avian influenza viruses that were isolated from chickens and ducks from 1996 to 2002. Infection studies indicated that most of the viruses replicate efficiently but none of them is lethal for SPF chickens. However, these viruses exhibit different phenotypes of replication in a mouse model. Five viruses, including 4 early isolates and one 2000 isolate, are not able to replicate in mice; 14 viruses replicate to moderate titers in mouse lungs and cause less than 5% weight loss, while other 8 viruses could replicate to high titers in the lungs and 7 of them induce 10–20% weight loss of the mice on day 5 after inoculation. Most of the viruses isolated after 1996 are antigenically different from the vaccine strain that is currently used in China. Three viruses isolated in central China in 1998 are resistant to adamantanes. Phylogenetic analysis revealed that all of the viruses originated from CK/BJ/1/94-like virus and formed multiple genotypes through complicated reassortment with QA/HK/G1/97-, CK/HK/G9/97-, CK/SH/F/98-, and TY/WI/66-like viruses. This study is a description of the previously uncharacterized H9N2 avian influenza viruses recently circulating in chickens and ducks in Mainland China. Our findings suggest that urgent attention should be paid to the control of H9N2 influenza viruses in animals and to the human's influenza pandemic preparedness

    Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Get PDF
    Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs) supported on the reduced graphene oxide (RGO) were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II) chloride, nickel (II) chloride, and graphite oxide (GO) with ammonia borane (AB) as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF) value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems

    Human Infection from Avian-like Influenza A (H1N1) Viruses in Pigs, China

    Get PDF
    In investigating influenza in an immunodeficient child in China, in December 2010, we found that the influenza virus showed high sequence identity to that of swine. Serologic evidence indicated that viral persistence in pigs was the source of infection. Continued surveillance of pigs and systemic analysis of swine influenza isolates are needed

    Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I pathways in birds and mammals:Adaptive exchanging of the OAS/RNase L and OASL/RIG-I pathway

    Get PDF
    Host cells develop the OAS/RNase L [2′–5′–oligoadenylate synthetase (OAS)/ribonuclease L] system to degrade cellular and viral RNA, and/or the OASL/RIG-I (2′–5′–OAS like/retinoic acid inducible protein I) system to enhance RIG-I-mediated IFN induction, thus providing the first line of defense against viral infection. The 2′–5′–OAS-like (OASL) protein may activate the OAS/RNase L system using its typical OAS-like domain (OLD) or mimic the K63-linked pUb to enhance antiviral activity of the OASL/RIG-I system using its two tandem ubiquitin-like domains (UBLs). We first describe that divergent avian (duck and ostrich) OASL inhibit the replication of a broad range of RNA viruses by activating and magnifying the OAS/RNase L pathway in a UBL-dependent manner. This is in sharp contrast to mammalian enzymatic OASL, which activates and magnifies the OAS/RNase L pathway in a UBL-independent manner, similar to 2′–5′–oligoadenylate synthetase 1 (OAS1). We further show that both avian and mammalian OASL can reversibly exchange to activate and magnify the OAS/RNase L and OASL/RIG-I system by introducing only three key residues, suggesting that ancient OASL possess 2–5A [px5′A(2′p5′A)n; x = 1-3; n ≥ 2] activity and has functionally switched to the OASL/RIG-I pathway recently. Our findings indicate the molecular mechanisms involved in the switching of avian and mammalian OASL molecules to activate and enhance the OAS/RNase L and OASL/RIG-I pathways in response to infection by RNA viruses
    corecore