31,993 research outputs found

    Resummation Effects in the Search of SM Higgs Boson at Hadron Colliders

    Full text link
    We examine the soft-gluon resummation effects, including the exact spin correlations among the final state particles, in the search of the Standard Model Higgs boson, via the process gg→H→WW/ZZ→4leptons,attheTevatronandtheLHC.AcomparisonbetweentheresummationandtheNext−to−Leadingorder(NLO)calculationisperformedafterimposingvariouskinematicscutssuggestedintheliteraturefortheHiggsbosonsearch.Forthegg\to H\to WW/ZZ \to 4 leptons, at the Tevatron and the LHC. A comparison between the resummation and the Next-to-Leading order (NLO) calculation is performed after imposing various kinematics cuts suggested in the literature for the Higgs boson search. For the H\to ZZmode,theresummationeffectsincreasetheacceptanceofthesignaleventsbyabout25variouskinematicsdistributionsofthefinalstateleptons.Forthe mode, the resummation effects increase the acceptance of the signal events by about 25%, as compared to the NLO prediction, and dramatically alter various kinematics distributions of the final state leptons. For the H\to WW$ mode, the acceptance rates of the signal events predicted by the resummation and NLO calculations are almost the same, but some of the predicted kinematical distributions are quite different. Thus, to precisely determine the properties of the Higgs boson at hadron colliders, the soft-gluon resummation effects have to be taken into account.Comment: The version to appear in PR

    Separability in Cohomogeneity-2 Kerr-NUT-AdS Metrics

    Get PDF
    The remarkable and unexpected separability of the Hamilton-Jacobi and Klein-Gordon equations in the background of a rotating four-dimensional black hole played an important role in the construction of generalisations of the Kerr metric, and in the uncovering of hidden symmetries associated with the existence of Killing tensors. In this paper, we show that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-AdS backgrounds in all dimensions, if one specialises the rotation parameters so that the metrics have cohomogeneity 2. Furthermore, we show that this property of separability extends to the NUT generalisations of these cohomogeneity-2 black holes that we obtained in a recent paper. In all these cases, we also construct the associated irreducible rank-2 Killing tensor whose existence reflects the hidden symmetry that leads to the separability. We also consider some cohomogeneity-1 specialisations of the new Kerr-NUT-AdS metrics, showing how they relate to previous results in the literature.Comment: Latex, 15 pages, minor typos correcte

    Kaon and pion parton distribution amplitudes to twist-three

    Full text link
    We compute all kaon and pion parton distribution amplitudes (PDAs) to twist-three and find that only the pseudotensor PDA can reasonably be approximated by its conformal limit expression. At terrestrially accessible energy scales, the twist-two and pseudoscalar twist-three PDAs differ significantly from those functions commonly associated with their forms in QCD's conformal limit. In all amplitudes studied, SU(3) flavour-symmetry breaking is typically a 13% effect. This scale is determined by nonperturbative dynamics; namely, the current-quark-mass dependence of dynamical chiral symmetry breaking. The heavier-quark is favoured by this distortion, for example, support is shifted to the s-quark in the negative kaon. It appears, therefore, that at energy scales accessible with existing and foreseeable facilities, one may obtain reliable expectations for experimental outcomes by using these "strongly dressed" PDAs in formulae for hard exclusive processes. Following this procedure, any discrepancies between experiment and theory will be significantly smaller than those produced by using the conformal-limit PDAs. Moreover, the magnitude of any disagreement will either be a better estimate of higher-order, higher-twist effects or provide more realistic constraints on the Standard Model.Comment: 14 pages, 4 figures, 2 tables. arXiv admin note: text overlap with arXiv:1406.335

    The temperature dependence of the local tunnelling conductance in cuprate superconductors with competing AF order

    Full text link
    Based on the t−t′−U−Vt-t'-U-V model with proper chosen parameters for describing the cuprate superconductors, it is found that near the optimal doping at low temperature (TT), only the pure d-wave superconductivity (ddSC) prevails and the antiferromagnetic (AF) order is completely suppressed. At higher TT, the AF order with stripe modulation and the accompanying charge order may emerge, and they could exist above the ddSC transition temperature. We calculate the local differential tunnelling conductance (LDTC) from the local density of states (LDOS) and show that their energy variations are rather different from each other as TT increases. Although the calculated modulation periodicity in the LDTC/LDOS and bias energy dependence of the Fourier amplitude of LDTC in the "pseudogap" region are in good agreement with the recent STM experiment [Vershinin etal.et al., Science {\bf 303}, 1995 (2004)], we point out that some of the energy dependent features in the LDTC do not represent the intrinsic characteristics of the sample

    Bond distortion effects and electric orders in spiral multiferroic magnets

    Full text link
    We study in this paper bond distortion effect on electric polarization in spiral multiferroic magnets based on cluster and chain models. The bond distortion break inversion symmetry and modify the dd-pp hybridization. Consequently, it will affect electric polarization which can be divided into spin-current part and lattice-mediated part. The spin-current polarization can be written in terms of e⃗i,j×(e⃗i×e⃗j)\vec{e}_{i,j}\times(\vec{e}_{i}\times\vec{e}_{j}) and the lattice-mediated polarization exists only when the M-O-M bond is distorted. The electric polarization for three-atom M-O-M and four-atom M-O2_{2}-M clusters is calculated. We also study possible electric ordering in three kinds of chains made of different clusters. We apply our theory to multiferroics cuprates and find that the results are in agreement with experimental observations.Comment: 14 pages, 11 figure
    • …
    corecore