474 research outputs found
High-resolution chromatin dynamics during a yeast stress response
Covalent histone modifications are highly conserved and play multiple roles in eukaryotic transcription regulation. Here, we mapped 26 histone modifications genome-wide in exponentially growing yeast and during a dramatic transcriptional reprogramming-the response to diamide stress. We extend prior studies showing that steady-state histone modification patterns reflect genomic processes, especially transcription, and display limited combinatorial complexity. Interestingly, during the stress response we document a modest increase in the combinatorial complexity of histone modification space, resulting from roughly 3% of all nucleosomes transiently populating rare histone modification states. Most of these rare histone states result from differences in the kinetics of histone modification that transiently uncouple highly correlated marks, with slow histone methylation changes often lagging behind the more rapid acetylation changes. Explicit analysis of modification dynamics uncovers ordered sequences of events in gene activation and repression. Together, our results provide a comprehensive view of chromatin dynamics during a massive transcriptional upheaval
Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting
The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR
Tensors, non-Gaussianities, and the future of potential reconstruction
We present projections for reconstruction of the inflationary potential
expected from ESA's upcoming Planck Surveyor CMB mission. We focus on the
effects that tensor perturbations and the presence of non-Gaussianities have on
reconstruction efforts in the context of non-canonical inflation models. We
consider potential constraints for different combinations of
detection/null-detection of tensors and non-Gaussianities. We perform Markov
Chain Monte Carlo and flow analyses on a simulated Planck-precision data set to
obtain constraints. We find that a failure to detect non-Gaussianities
precludes a successful inversion of the primordial power spectrum, greatly
affecting uncertainties, even in the presence of a tensor detection. In the
absence of a tensor detection, while unable to determine the energy scale of
inflation, an observable level of non-Gaussianities provides correlations
between the errors of the potential parameters, suggesting that constraints
might be improved for suitable combinations of parameters. Constraints are
optimized for a positive detection of both tensors and non-Gaussianities.Comment: 12 pages, 5 figures, LaTeX; V2: version submitted to JCA
Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs
Halo coronal mass ejections (HCMEs) are responsible of the most severe
geomagnetic storms. A prediction of their geoeffectiveness and travel time to
Earth's vicinity is crucial to forecast space weather.
Unfortunately coronagraphic observations are subjected to projection effects
and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it
Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the
space speed, width and source location of HCMEs. We applied this technique to
obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO
experiment during a period from the beginning of 2001 until the end of 2002
(solar cycle 23). These parameters were applied for the space weather forecast.
Our study determined that the space speeds are strongly correlated with the
travel times of HCMEs within Earth's vicinity and with the magnitudes related
to geomagnetic disturbances
Inflation from Warped Space
A long period of inflation can be triggered when the inflaton is held up on
the top of a steep potential by the infrared end of a warped space. We first
study the field theory description of such a model. We then embed it in the
flux stabilized string compactification. Some special effects in the throat
reheating process by relativistic branes are discussed. We put all these
ingredients into a multi-throat brane inflationary scenario. The resulting
cosmic string tension and a multi-throat slow-roll model are also discussed.Comment: 39 pages; v4, added reference, to appear in JHE
Branching ratios of decays in perturbative QCD approach
We study the rare decays , which can occur only via
annihilation type diagrams in the standard model. We calculate all of the four
modes, , in the framework of perturbative QCD approach
and give the branching ratios of the order about .Comment: 18 pages, 1 figure, Revte
Reconfigurable Liquid Whispering Gallery Mode Microlasers
Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz/(mol · mL-1) and the detectivity limit around 5.56 × 10-3 mol · mL-1 is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing
A synthetic biology approach to probing nucleosome symmetry
The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and several recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read out, we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing the effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We also demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read out by effector proteins in the cell
Relic Neutrino Absorption Spectroscopy
Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang
relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption
dips in the neutrino flux to be observed at Earth. The high-energy edges of
these dips are fixed, via the resonance energies, by the neutrino masses alone.
Their depths are determined by the cosmic neutrino background density, by the
cosmological parameters determining the expansion rate of the universe, and by
the large redshift history of the cosmic neutrino sources. We investigate the
possibility of determining the existence of the cosmic neutrino background
within the next decade from a measurement of these absorption dips in the
neutrino flux. As a by-product, we study the prospects to infer the absolute
neutrino mass scale. We find that, with the presently planned neutrino
detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant
energy regime above 10^{21} eV, relic neutrino absorption spectroscopy becomes
a realistic possibility. It requires, however, the existence of extremely
powerful neutrino sources, which should be opaque to nucleons and high-energy
photons to evade present constraints. Furthermore, the neutrino mass spectrum
must be quasi-degenerate to optimize the dip, which implies m_{nu} >~ 0.1 eV
for the lightest neutrino. With a second generation of neutrino detectors,
these demanding requirements can be relaxed considerably.Comment: 19 pages, 26 figures, REVTeX
Exciton energy recycling from ZnO defect levels: Towards electrically driven hybrid quantum-dot white light-emitting-diodes
An electrically driven quantum-dot hybrid white light-emitting diode is fabricated via spin coating CdSe quantum dots onto a GaN/ZnO nanorod matrix. For the first time, quantum dots are excited by fluorescence resonance energy transfer from the carriers trapped at surface defect levels. The prototype device exhibits achromatic emission, with a chromaticity coordinate of (0.327, 0.330), and correlated color temperature similar to sunlight. © 2016 The Royal Society of Chemistry
- …