43,334 research outputs found

    Spin singlet pairing in the superconducting state of NaxCoO2\cdot1.3H2O: evidence from a ^{59}Co Knight shift in a single crystal

    Get PDF
    We report a ^{59}Co Knight shift measurement in a single crystal of the cobalt oxide superconductor Na_{x}CoO_2\cdot1.3H_2O (T_c=4.25 K). We find that the shift due to the spin susceptibility, K^s, is substantially large and anisotropic, with the spin shift along the a-axis K^s_a being two times that along the c-axis K^s_c. The shift decreases with decreasing temperature (T) down to T\sim100 K, then becomes a constant until superconductivity sets in. Both K^s_a and K^s_c decrease below T_c. Our results indicate unambiguously that the electron pairing in the superconducting state is in the spin singlet form.Comment: 4 pages, 5 figure

    Robust formulation of Wick's theorem for computing matrix elements between Hartree-Fock-Bogoliubov wavefunctions

    Full text link
    Numerical difficulties associated with computing matrix elements of operators between Hartree-Fock-Bogoliubov (HFB) wavefunctions have plagued the development of HFB-based many-body theories for decades. The problem arises from divisions by zero in the standard formulation of the nonorthogonal Wick's theorem in the limit of vanishing HFB overlap. In this paper, we present a robust formulation of Wick's theorem that stays well-behaved regardless of whether the HFB states are orthogonal or not. This new formulation ensures cancellation between the zeros of the overlap and the poles of the Pfaffian, which appears naturally in fermionic systems. Our formula explicitly eliminates self-interaction, which otherwise causes additional numerical challenges. A computationally efficient version of our formalism enables robust symmetry-projected HFB calculations with the same computational cost as mean-field theories. Moreover, we avoid potentially diverging normalization factors by introducing a robust normalization procedure. The resulting formalism treats even and odd number of particles on equal footing and reduces to Hartree-Fock as a natural limit. As proof of concept, we present a numerically stable and accurate solution to a Jordan-Wigner-transformed Hamiltonian, whose singularities motivated the present work. Our robust formulation of Wick's theorem is a most promising development for methods using quasiparticle vacuum states

    New molecular candidates: X(1910), X(2200), and X(2350)

    Full text link
    Assuming the newly observed resonant structures X(1910), X(2200), and X(2350) as ωω\omega\omega, ωϕ\omega\phi, and ϕϕ\phi\phi molecular states respectively, we compute their mass values in the framework of QCD sum rules. The numerical results are 1.97±0.17GeV1.97\pm0.17 {GeV} for ωω\omega\omega state, 2.07±0.21GeV2.07\pm0.21 {GeV} for ωϕ\omega\phi state, and 2.18±0.29GeV2.18\pm0.29 {GeV} for ϕϕ\phi\phi state, which coincide with the experimental values of X(1910), X(2200), and X(2350), respectively. This supports the statement that X(1910), X(2200), and X(2350) could be ωω\omega\omega, ωϕ\omega\phi, and ϕϕ\phi\phi molecular candidates respectively.Comment: 9 pages, 9 eps figures; the name of X(2000) changed to X(1910) according to the updated data of experiments; more references and discussions added; accepted for publication in PRD. arXiv admin note: substantial text overlap with arXiv:1211.2277, arXiv:1201.341

    Extended calculations of energy levels, radiative properties, AJA_{J}, BJB_{J} hyperfine interaction constants, and Land\'e gJg_{J}-factors for nitrogen-like \mbox{Ge XXVI}

    Get PDF
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p32s^{2} 2p^{3}, 2s2p42s 2p^{4}, 2p52p^{5}, 2s22p23l2s^{2} 2p^{2} 3l~(l=s,p,dl=s,p,d), 2s2p33l2s 2p^{3}3l (l=s,p,dl=s,p,d), and 2p43l2p^{4} 3l (l=s,p,dl=s,p,d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Land\'e gJg_{J}-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n=3n=3 levels, and are also useful for modeling and diagnosing fusion plasmas
    • …
    corecore