21,914 research outputs found
Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling
Unlike on images, semantic learning on 3D point clouds using a deep network
is challenging due to the naturally unordered data structure. Among existing
works, PointNet has achieved promising results by directly learning on point
sets. However, it does not take full advantage of a point's local neighborhood
that contains fine-grained structural information which turns out to be helpful
towards better semantic learning. In this regard, we present two new operations
to improve PointNet with a more efficient exploitation of local structures. The
first one focuses on local 3D geometric structures. In analogy to a convolution
kernel for images, we define a point-set kernel as a set of learnable 3D points
that jointly respond to a set of neighboring data points according to their
geometric affinities measured by kernel correlation, adapted from a similar
technique for point cloud registration. The second one exploits local
high-dimensional feature structures by recursive feature aggregation on a
nearest-neighbor-graph computed from 3D positions. Experiments show that our
network can efficiently capture local information and robustly achieve better
performances on major datasets. Our code is available at
http://www.merl.com/research/license#KCNetComment: Accepted in CVPR'18. *indicates equal contributio
Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory
HPC applications pose high demands on I/O performance and storage capability.
The emerging non-volatile memory (NVM) techniques offer low-latency, high
bandwidth, and persistence for HPC applications. However, the existing I/O
stack are designed and optimized based on an assumption of disk-based storage.
To effectively use NVM, we must re-examine the existing high performance
computing (HPC) I/O sub-system to properly integrate NVM into it. Using NVM as
a fast storage, the previous assumption on the inferior performance of storage
(e.g., hard drive) is not valid any more. The performance problem caused by
slow storage may be mitigated; the existing mechanisms to narrow the
performance gap between storage and CPU may be unnecessary and result in large
overhead. Thus fully understanding the impact of introducing NVM into the HPC
software stack demands a thorough performance study.
In this paper, we analyze and model the performance of I/O intensive HPC
applications with NVM as a block device. We study the performance from three
perspectives: (1) the impact of NVM on the performance of traditional page
cache; (2) a performance comparison between MPI individual I/O and POSIX I/O;
and (3) the impact of NVM on the performance of collective I/O. We reveal the
diminishing effects of page cache, minor performance difference between MPI
individual I/O and POSIX I/O, and performance disadvantage of collective I/O on
NVM due to unnecessary data shuffling. We also model the performance of MPI
collective I/O and study the complex interaction between data shuffling,
storage performance, and I/O access patterns.Comment: 10 page
Distribution and Accumulation of Mercury in Sediments of Kaohsiung River Mouth, Taiwan
AbstractThis study was conducted using the data collected in May 2009 to investigate and analyze mercury (Hg) contained in the surface sediments, and to evaluate the accumulation of Hg and the degree of its potential risk. The results show that samples collected at all monitoring stations near the mouth of Kaohsiung River contain 0.15–1.15mg kg-1of Hg with average of 0.68±0.30mg kg-1. The spatial distribution of Hg reveals that the Hg concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of pollution. The accumulation factor and potential ecological risk index indicate that the sedimentation at Kaohsiung River mouth has the most serious degree of Hg accumulation and the highest ecological potential risk. Therefore, a strategy for effective controlling and managing Kaohsiung River upstream pollution needs to be immediately implemented in order to improve the sediment quality and alleviate the ecological risk
- …