17,374 research outputs found

    Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory

    Full text link
    HPC applications pose high demands on I/O performance and storage capability. The emerging non-volatile memory (NVM) techniques offer low-latency, high bandwidth, and persistence for HPC applications. However, the existing I/O stack are designed and optimized based on an assumption of disk-based storage. To effectively use NVM, we must re-examine the existing high performance computing (HPC) I/O sub-system to properly integrate NVM into it. Using NVM as a fast storage, the previous assumption on the inferior performance of storage (e.g., hard drive) is not valid any more. The performance problem caused by slow storage may be mitigated; the existing mechanisms to narrow the performance gap between storage and CPU may be unnecessary and result in large overhead. Thus fully understanding the impact of introducing NVM into the HPC software stack demands a thorough performance study. In this paper, we analyze and model the performance of I/O intensive HPC applications with NVM as a block device. We study the performance from three perspectives: (1) the impact of NVM on the performance of traditional page cache; (2) a performance comparison between MPI individual I/O and POSIX I/O; and (3) the impact of NVM on the performance of collective I/O. We reveal the diminishing effects of page cache, minor performance difference between MPI individual I/O and POSIX I/O, and performance disadvantage of collective I/O on NVM due to unnecessary data shuffling. We also model the performance of MPI collective I/O and study the complex interaction between data shuffling, storage performance, and I/O access patterns.Comment: 10 page

    Copper Contamination in the Sediments of Salt River Mouth, Taiwan

    Get PDF
    AbstractThis study was conducted using the data collected at the mouth of Salt River to investigate and analyze copper (Cu) contained in the sediments, and to evaluate the accumulation of Cu and the degree of its potential risk. The results show that samples collected at all monitoring stations near the mouth of Salt River contain 286–895mg/kg of Cu with average of 501±243mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of pollution. The accumulation factor and potential ecological risk index indicate that the sedimentation at Salt River mouth has the most serious degree of Cu accumulation and the highest ecological potential risk
    • …
    corecore