36,259 research outputs found
Emerging functions of mammalian mitochondrial fusion and fission
Mitochondria provide a myriad of services to the cell, including energy production, calcium buffering and regulation of apoptosis. How these diverse functions are coordinated among the hundreds of mitochondria in a given cell is largely unknown, but is probably dependent on the dynamic nature of mitochondria. In this review, we explore the latest developments in mitochondrial dynamics in mammals. These studies indicate that mitofusins and OPA1 are essential for mitochondrial fusion, whereas Fis1 and Drp1 are essential for mitochondrial fission. The overall morphology of the mitochondrial population depends on the relative activities of these two sets of proteins. In addition to the regulation of mitochondrial shape, these molecules also play important roles in cell and tissue physiology. Perturbation of mitochondrial fusion results in defects in mitochondrial membrane potential and respiration, poor cell growth and increased susceptibility to cell death. These cellular observations may explain why mitochondrial fusion is essential for embryonic development. Two inherited neuropathies, Charcot–Marie–Tooth type 2A and autosomal dominant optic atrophy, are caused by mutations in mitofusin 2 and OPA1, suggesting that proper regulation of mitochondrial dynamics is particularly vital to neurons. Mitochondrial fission accompanies several types of apoptotic cell death and appears important for progression of the apoptotic pathway. These studies provide insight into how mitochondria communicate with one another to coordinate mitochondrial function and morphology
Disruption of fusion results in mitochondrial heterogeneity and dysfunction
Mitochondria undergo continual cycles of fusion and fission, and the balance of these opposing processes regulates mitochondrial morphology. Paradoxically, cells invest many resources to maintain tubular mitochondrial morphology, when reducing both fusion and fission simultaneously achieves the same end. This observation suggests a requirement for mitochondrial fusion, beyond maintenance of organelle morphology. Here, we show that cells with targeted null mutations in Mfn1 or Mfn2 retained low levels of mitochondrial fusion and escaped major cellular dysfunction. Analysis of these mutant cells showed that both homotypic and heterotypic interactions of Mfns are capable of fusion. In contrast, cells lacking both Mfn1 and Mfn2 completely lacked mitochondrial fusion and showed severe cellular defects, including poor cell growth, widespread heterogeneity of mitochondrial membrane potential, and decreased cellular respiration. Disruption of OPA1 by RNAi also blocked all mitochondrial fusion and resulted in similar cellular defects. These defects in Mfn-null or OPA1-RNAi mammalian cells were corrected upon restoration of mitochondrial fusion, unlike the irreversible defects found in fzo yeast. In contrast, fragmentation of mitochondria, without severe loss of fusion, did not result in such cellular defects. Our results showed that key cellular functions decline as mitochondrial fusion is progressively abrogated
Quantum Quench of an Atomic Mott Insulator
We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid
quantum phase transition using an ultra-cold atomic gas trapped in an optical
lattice. Quenching from the Mott insulator to superfluid phase is accomplished
by continuously tuning the ratio of Hubbard tunneling to interaction energy.
Excitations of the condensate formed after the quench are measured using
time-of-flight imaging. We observe that the degree of excitation is
proportional to the fraction of atoms that cross the phase boundary, and that
the quantity of excitations and energy produced during the quench have a
power-law dependence on the quench rate. These phenomena suggest an excitation
process analogous to the Kibble-Zurek (KZ) mechanism for defect generation in
non-equilibrium classical phase transitions
Equation-free Dynamic Renormalization of a KPZ-type Equation
In the context of equation-free computation, we devise and implement a
procedure for using short-time direct simulations of a KPZ type equation to
calculate the self-similar solution for its ensemble averaged correlation
function. The method involves "lifting" from candidate pair-correlation
functions to consistent realization ensembles, short bursts of KPZ-type
evolution, and appropriate rescaling of the resulting averaged pair correlation
functions. Both the self-similar shapes and their similarity exponents are
obtained at a computational cost significantly reduced to that required to
reach saturation in such systems
OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
OPA1, a dynamin-related guanosine triphosphatase mutated in dominant optic atrophy, is required for the fusion of mitochondria. Proteolytic cleavage by the mitochondrial processing peptidase generates long isoforms from eight messenger RNA (mRNA) splice forms, whereas further cleavages at protease sites S1 and S2 generate short forms. Using OPA1-null cells, we developed a cellular system to study how individual OPA1 splice forms function in mitochondrial fusion. Only mRNA splice forms that generate a long isoform in addition to one or more short isoforms support substantial mitochondrial fusion activity. On their own, long and short OPA1 isoforms have little activity, but, when coexpressed, they functionally complement each other. Loss of mitochondrial membrane potential destabilizes the long isoforms and enhances the cleavage of OPA1 at S1 but not S2. Cleavage at S2 is regulated by the i-AAA protease Yme1L. Our results suggest that mammalian cells have multiple pathways to control mitochondrial fusion through regulation of the spectrum of OPA1 isoforms
- …