87 research outputs found

    ‘Cardinal Joy’ Peach

    Get PDF

    Metabolic Characterization of Hyoscyamus niger Ornithine Decarboxylase

    Get PDF
    Ornithine decarboxylase (ODC) catalyzes ornithine decarboxylation to yield putrescine, a key precursor of polyamines, and tropane alkaloids (TAs). Here, to investigate in depth the role of ODC in polyamine/TA biosynthesis and to provide a candidate gene for engineering polyamine/TA production, the ODC gene (HnODC) was characterized from Hyoscyamus niger, a TA-producing plant. Our phylogenetic analysis revealed that HnODC was clustered with ODC enzymes of plants. Experimental work showed HnODC highly expressed in H. niger roots and induced by methyl jasmonate (MeJA). In the MeJA treatment, the production of both putrescine and N-methylputrescine were markedly promoted in roots, while contents of putrescine, spermidine, and spermine were all significantly increased in leaves. By contrast, MeJA did not significantly change the production of either hyoscyamine or scopolamine in H. niger plants. Building on these results, the 50-kDa His-tagged HnODC proteins were purified for enzymatic assays. When ornithine was fed to HnODC, the putrescine product was detected by HPLC, indicating HnODC catalyzed ornithine to form putrescine. Finally, we also investigated the enzymatic kinetics of HnODC. Its Km, Vmax, and Kcat values for ornithine were respectively 2.62 ± 0.11 mM, 1.87 ± 0.023 nmol min-1 μg-1 and 1.57 ± 0.015 s-1, at pH 8.0 and at 30°C. The HnODC enzyme displays a much higher catalytic efficiency than most reported plant ODCs, suggesting it may be an ideal candidate gene for engineering polyamine/TA biosynthesis

    Molecular Characterization of the 1-Deoxy-D-Xylulose 5-Phosphate Synthase Gene Family in Artemisia annua

    Get PDF
    Artemisia annua produces artemisinin, an effective antimalarial drug. In recent decades, the later steps of artemisinin biosynthesis have been thoroughly investigated; however, little is known about the early steps of artemisinin biosynthesis. Comparative transcriptomics of glandular and filamentous trichomes and 13CO2 radioisotope study have shown that the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, rather than the mevalonate pathway, plays an important role in artemisinin biosynthesis. In this study, we have cloned three 1-deoxy-D-xylulose 5-phosphate synthase (DXS) genes from A. annua (AaDXS1, AaDXS2, and AaDXS3); the DXS enzyme catalyzes the first and rate-limiting enzyme of the MEP pathway. We analyzed the expression of these three genes in different tissues in response to multiple treatments. Phylogenetic analysis revealed that each of the three DXS genes belonged to a distinct clade. Subcellular localization analysis indicated that all three AaDXS proteins are targeted to chloroplasts, which is consistent with the presence of plastid transit peptides in their N-terminal regions. Expression analyses revealed that the expression pattern of AaDXS2 in specific tissues and in response to different treatments, including methyl jasmonate, light, and low temperature, was similar to that of artemisinin biosynthesis genes. To further investigate the tissue-specific expression pattern of AaDXS2, the promoter of AaDXS2 was cloned upstream of the β-glucuronidase gene and was introduced in arabidopsis. Histochemical staining assays demonstrated that AaDXS2 was mainly expressed in the trichomes of Arabidopsis leaves. Together, these results suggest that AaDXS2 might be the only member of the DXS family in A. annua that is involved in artemisinin biosynthesis
    • …
    corecore