14,237 research outputs found
Properties of the MIMO radar ambiguity function
MIMO (multiple-input multiple-output) radar is an emerging technology which has drawn considerable attention. Unlike the traditional SIMO (single-input multiple-output) radar, which transmits scaled versions of a single waveform in the antenna elements, the MIMO radar transmits independent waveforms in each of the antenna elements. It has been shown that MIMO radar systems have many advantages such as high spatial resolution, improved parameter identifiability, and enhanced flexibility for transmit beampattern design. In the traditional SIMO radar, the range and Doppler resolutions can be characterized by the radar ambiguity function. It is a major tool for studying and analyzing radar signals. Recently, the ambiguity function has been extended to the MIMO radar case. In this paper, some mathematical properties of the MIMO radar ambiguity function are derived. These properties provide insights into the MIMO radar waveform design
Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels
The vertical Bell labs layered space-time (V-BLAST) system is a multi-input multioutput (MIMO) system designed to achieve good multiplexing gain. In recent literature, a precoder, which exploits channel information, has been added in the V-BLAST transmitter. This precoder forces each symbol stream to have an identical mean square error (MSE). It can be viewed as an alternative to the bit-loading method. In this paper, this precoded V-BLAST system is extended to the case of frequency-selective MIMO channels. Both the FIR and redundant types of transceivers, which use cyclic-prefixing and zero-padding, are considered. A fast algorithm for computing a cyclic-prefixing-based precoded V-BLAST transceiver is developed. Experiments show that the proposed methods with redundancy have better performance than the SVD-based system with optimal powerloading and bit loading for frequency-selective MIMO channels. The gain comes from the fact that the MSE-equalizing precoder has better bit-error rate performance than the optimal bitloading method
MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms
The concept of multiple-input multiple-output (MIMO) radars has drawn considerable attention recently. Unlike the traditional single-input multiple-output (SIMO) radar which emits coherent waveforms to form a focused beam, the MIMO radar can transmit orthogonal (or incoherent) waveforms. These waveforms can be used to increase the system spatial resolution. The waveforms also affect the range and Doppler resolution. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. Recently, the idea of ambiguity function has been extended to the case of MIMO radar. In this paper, some mathematical properties of the MIMO radar ambiguity function are first derived. These properties provide some insights into the MIMO radar waveform design. Then a new algorithm for designing the orthogonal frequency-hopping waveforms is proposed. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions
Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch
It is well known that the performance of the minimum variance distortionless response (MVDR) beamformer is very sensitive to steering vector mismatch. Such mismatches can occur as a result of direction-of-arrival (DOA) errors, local scattering, near-far spatial signature mismatch, waveform distortion, source spreading, imperfectly calibrated arrays and distorted antenna shape. In this paper, an adaptive beamformer that is robust against the DOA mismatch is proposed. This method imposes two quadratic constraints such that the magnitude responses of two steering vectors exceed unity. Then, a diagonal loading method is used to force the magnitude responses at the arrival angles between these two steering vectors to exceed unity. Therefore, this method can always force the gains at a desired range of angles to exceed a constant level while suppressing the interferences and noise. A closed-form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has excellent signal-to-interference-plus-noise ratio performance and a complexity comparable to the standard MVDR beamformer
MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter
The concept of multiple-input multiple-output (MIMO) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. Numerical results show that the proposed methods have better SINR performance than existing design methods
MIMO radar with broadband waveforms: Smearing filter banks and 2D virtual arrays
In this paper MIMO radars with broadband
waveforms are considered. A time domain viewpoint is
taken, which allows frequency invariant beamforming
with a filter bank called the smearing filter bank. Motivated
by recent work on two dimensional arrays to
obtain frequency invariant one dimensional beams, the
generation of two dimensional virtual arrays from one
dimensional ULAs is also considered. It is also argued
that when the smearing filter bank is appropriately used,
frequency invariant 2D beams can be generated
MIMO radar space–time adaptive processing using prolate spheroidal wave functions
In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity
- …