1,018 research outputs found

    Effects of Sophora japonica flowers (Huaihua) on cerebral infarction

    Get PDF
    The dried flowers and buds of Sophora japonica are used as a medicinal herb in China, Japan and Korea to treat bleeding hemorrhoids and hematemesis. This article presents an overview of the effects of Sophora japonica on cerebral infarction based on literature searched from Medline, PubMed, Cochrane Library and the China National Knowledge Infrastructure (CNKI). Sophora japonica contains both anti-hemorrhagic and anti-hemostatic substances. Sophora japonica reduces cerebral infarction partly as a result of its anti-oxidative and anti-inflammatory activities. Previous studies found that Sophora japonica reduced the size of cerebral infarction and neurological deficits and reduced microglial activation, interleukin-1β release and number of apoptotic cells in ischemia-reperfusion injured Sprague-Dawley rats. Further study is required to determine the relationship between Sophora japonica-mediated reduction in cerebral infarction size and the effects of Sophora japonica on platelet aggregation and cardiovascular function

    Invited - Temporal information processing for in-sensor computing based on amorphous IGZO phototransistor

    Get PDF
    On facing the massive and unstructured data processing, it is imperative to emulate artificial neural networks with new physical hardware architectures in addition to software-based approaches, to overcome the barrier of the von Neumann bottleneck. By mimicking the human visual sensing system, the optoelectronic devices, which can perform data compression and reduce the network size through the reconstruction of input signals, are promising to develop the neuromorphic in-sensor computing for minimizing the time latency as well as improving the energy efficiency. In this work, we demonstrate an amorphous indium-gallium-zinc-oxide (a-IGZO) phototransistor with ZrOx high-k dielectric layer with distinct responses to various optical stimulation inputs. Due to the persistent photoconductivity (PPC) effect of a-IGZO after lighting, our device is able to exhibit synaptic functions via the application of 405 nm light spikes, such as paired-pulse facilitation (PPF) and short-term memory (STM). Furthermore, in order to perform the temporal optical signals processing, the a-IGZO phototransistor is stimulated by four-timeframe temporal pulse streams composed of 405 nm light spikes and it expresses the different temporal responses. The distinct output photocurrent response reveals that the a-IGZO phototransistor can be applied to distinguish the time-series input light signals. Accordingly, the a-IGZO phototransistor have a promising potential for processing optical temporal information and can possibly be implemented for visual in-sensor computing techniques. Please click Download on the upper right corner to see the full abstract

    Financial Reporting for Electronic Resource and Service Expenditures: The Case of University Libraries in Taiwan

    Get PDF
    Through a qualitative research procedure, this paper intends to explore useful accounting classification relating to electronic resource and service expenditures necessarily disclosed in a library annual report. As a result, based on line item structure emerged in this paper, an appropriate direction to develop library-specific Generally Accepted Accounting Principle for reporting electronic resource and service expenditures can be evolved in the future

    Enhancing the Insulation of Wide-Range Spectrum in the PVA/N Thin Film by Doping ZnO Nanowires

    Get PDF
    In this study, polyvinyl alcohol/nitrogen (PVA/N) hybrid thin films doped with sharp-sword ZnO nanowires with insulating effect and wide-range spectrum are demonstrated for the first time. PVA/N doped ZnO nanocomposites were developed by blending PVA and N-doped ZnO nanowires in water at room temperature. Measurements from the field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman, and photoluminescence emission (PL) spectra of the products show that nitrogen is successfully doped into the ZnO wurtzite crystal lattice. In addition, the refractive index of PVA/N doped ZnO hybrid thin films can be controlled by varying the doped ZnO nanowires under different NH3 concentrations. It is believed that PVA/N doped ZnO hybrid thin films are a suitable candidate for emerging applications like heat-shielding coatings on smart windows

    Fast-Flux Bot Detection in Real Time

    Full text link
    Abstract. The fast-flux service network architecture has been widely adopted by bot herders to increase the productivity and extend the lifes-pan of botnets ’ domain names. A fast-flux botnet is unique in that each of its domain names is normally mapped to different sets of IP addresses over time and legitimate users ’ requests are handled by machines other than those contacted by users directly. Most existing methods for de-tecting fast-flux botnets rely on the former property. This approach is effective, but it requires a certain period of time, maybe a few days, before a conclusion can be drawn. In this paper, we propose a novel way to detect whether a web service is hosted by a fast-flux botnet in real time. The scheme is unique because it relies on certain intrinsic and invariant characteristics of fast-flux bot-nets, namely, 1) the request delegation model, 2) bots are not dedicated to malicious services, and 3) the hardware used by bots is normally infe-rior to that of dedicated servers. Our empirical evaluation results show that, using a passive measurement approach, the proposed scheme can detect fast-flux bots in a few seconds with more than 96 % accuracy, while the false positive/negative rates are both lower than 5%

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing
    • …
    corecore