11 research outputs found

    Proteomic analysis of age-related changes in ovine cerebrospinal fluid

    Get PDF
    Cerebrospinal fluid (CSF) circulates through the brain and has a unique composition reflecting the biological processes of the brain. Identifying ageing CSF biomarkers can aid in understanding the ageing process and interpreting CSF protein changes in neurodegenerative diseases. In this study, ovine CSF proteins from young (1-2 year old), middle aged (3-6 year old) and old (7-10 year old) sheep were systemically studied. CSF proteins were labelled with iTRAQ tagging reagents and fractionated by 2-dimensional high performance, liquid chromatography. Tryptic peptides were identified using MS/MS fragmentation ions for sequencing and quantified from iTRAQ reporter ion intensities at m/z 114, 115, 116 and 117. Two hundred thirty one peptides were detected, from which 143 proteins were identified. There were 52 proteins with >25% increase in concentrations in the old sheep compared to the young. 33 of them increased >25% but 50% but 1 fold [i.e. haptoglobin (Hp), haemoglobin, neuroendocrine protein 7B2, IgM, fibrous sheath interacting protein 1, vimentin]. There were 18 proteins with >25% decrease in concentrations in the old sheep compared to the young. 17 of them decreased >25% but <50%, and histone deacetylase 7 (HDAC7) was gradually decreased for over 80%. Glutathione S-transferase was decreased in middle aged CSF compared to both young and old CSF. The differential expressions of 3 proteins (Hp, neuroendocrine protein 7B2, IgM) were confirmed by immunoassays. These data expand our current knowledge regarding ovine CSF proteins, supply the necessary information to understand the ageing process in the brain and provide a basis for diagnosis of neurodegenerative diseases

    The Efficacy of a Newly Developed Cueing Device for Gait Mobility in Parkinson’s Disease

    Get PDF
    Background. External cues are effective in improving gait in people with Parkinson’s disease (PD). However, the most effective cueing method has yet to be determined. Objective. The aim of this study was to compare the immediate effects of using visual, auditory, or somatosensory cues on their own or in combination during walking compared to no cues in people with PD. Methods. This was a single blinded, randomly selected, controlled study. Twenty people with PD with an age range of 46–79 years and Hoehn and Yahr scores of 1–3 were recruited. Participants were studied under 4 cueing conditions; no cue, visual, auditory, or somatosensory cues, which were randomly selected individually or in a combination. Results. A repeated measures ANOVA with pairwise comparisons using Bonferroni correction showed that any single or combination of the cues resulted in an improvement in gait velocity and stride length compared to no cue. Some significant differences were also seen when comparing different combinations of cues, specifically stride length showed significant improvements when additional cues were added to the light cue. The statistically significant difference was set at p<0.05. Conclusions. Walking using visual, auditory, or somatosensory cues can immediately improve gait mobility in people with PD. Any or a combination of the cues tested could be chosen depending on the ability of the individual to use that cue

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    “Sphere to Cylinder”: Pseudo-Cylindrical Projections

    No full text
    corecore