10,684 research outputs found

    Enhanced drag in pipe turbulent flow by an aqueous electrolyte: an electroviscous effect

    Get PDF
    Drag enhancement is reported for turbulent pipe flow of aqueous electrolyte solutions. No electroviscous effect was obtained with laminar flow. Nor was any unusual pressure drop observed for laminar or turbulent flow of non-electrolyte aqueous solutions such as sugar. An electroviscous theory was advanced that predicted the drag enhancement for a 1/1 electrolyte solution. The theory depended on consideration of Debye length

    Magnetic Field Effects in the Pseudogap Phase: A Precursor Superconductivity Scenario

    Full text link
    We demonstrate that the observed dependences of TcT_c and T∗T^* on small magnetic fields can be readily understood in a precursor superconductivity approach to the pseudogap phase. In this approach, the presence of a pseudogap at TcT_c (but not at T∗T^*) and the associated suppression of the density of states lead to very different sensitivities to pair-breaking perturbations for the two temperatures. Our semi-quantitative results address the puzzling experimental observation that the coherence length Ο\xi is weakly dependent on hole concentration xx throughout most of the phase diagram. We present our results in a form which can be compared with the recent experiments of Shibauchi et al, and argue that orbital effects contribute in an important way to the HH dependence of T∗T^*.Comment: 6 pages, 1 figure, elsart.cls included. Submitted to the proceeding of SNS 2001, Chicag

    Evaluation of measurement technique for a precision aspheric artefact using a nano-measuring machine

    Get PDF
    A precision aspheric artefact is measured in 3D by a commercially available nano-measuring machine (NMM) integrated with a contact inductive sensor as the probe. The mathematics of 3D compensation of the error caused by the probe radius is derived. The influence of the probe radius measurement uncertainty on the compensation errors for the 3D measurements is discussed. If the calibration uncertainty of probe radius is 1m and 0.1 m respectively, the compensation errors for a paraboloid artefact are within 100 nm and 10 nm respectively, and the artefact measurement uncertainties are 103 nm and 26 nm respectively. The artefact calibration uncertainty depends more on the uncertainty of the probe radius calibration than the probe radius

    Magnetic field effects on TcT_c and the pseudogap onset temperature in cuprate superconductors

    Full text link
    We study the sensitivity of TcT_c and the pseudogap onset temperature, T∗T^*, to low fields, HH, for cuprate superconductors, using a BCS-based approach extended to arbitrary coupling. We find that T∗T^* and TcT_c, which are of the same superconducting origin, have very different HH dependences. The small coherence length makes T∗T^* rather insensitive to the field. However, the presence of the pseudogap at TcT_c makes TcT_c more sensitive to HH. Our results for the coherence length Ο\xi fit well with existing experiments. We predict that very near the insulator Ο\xi will rapidly increase.Comment: 4 pages, 1 figure, contribution to the PPHMF-IV conference, Oct. 200

    High Quality, Transferable Graphene Grown on Single Crystal Cu(111) Thin Films on Basal-Plane Sapphire

    Full text link
    The current method of growing large-area graphene on Cu surfaces (polycrystalline foils and thin films) and its transfer to arbitrary substrates is technologically attractive. However, the quality of graphene can be improved significantly by growing it on single-crystal Cu surfaces. Here we show that high quality, large-area graphene can be grown on epitaxial single-crystal Cu(111) thin films on reusable basal-plane sapphire (alpha-Al2O3(0001)) substrates and then transferred to another substrate. While enabling graphene growth on Cu single-crystal surfaces, this method has the potential to avoid the high cost and extensive damage to graphene associated with sacrificing bulk single-crystal Cu during graphene transfer.Comment: 10 pages, 3 figure

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Metastable dark matter mechanisms for INTEGRAL 511 keV Îł\gamma rays and DAMA/CoGeNT events

    Full text link
    We explore dark matter mechanisms that can simultaneously explain the galactic 511 keV gamma rays observed by INTEGRAL/SPI, the DAMA/LIBRA annual modulation, and the excess of low-recoil dark matter candidates observed by CoGeNT. It requires three nearly degenerate states of dark matter in the 4-7 GeV mass range, with splittings respectively of order an MeV and a few keV. The top two states have the small mass gap and transitions between them, either exothermic or endothermic, can account for direct detections. Decays from one of the top states to the ground state produce low-energy positrons in the galaxy whose associated 511 keV gamma rays are seen by INTEGRAL. This decay can happen spontaneously, if the excited state is metastable (longer-lived than the age of the universe), or it can be triggered by inelastic scattering of the metastable states into the shorter-lived ones. We focus on a simple model where the DM is a triplet of an SU(2) hidden sector gauge symmetry, broken at the scale of a few GeV, giving masses of order \lsim 1 GeV to the dark gauge bosons, which mix kinetically with the standard model hypercharge. The purely decaying scenario can give the observed angular dependence of the 511 keV signal with no positron diffusion, while the inelastic scattering mechanism requires transport of the positrons over distances \sim 1 kpc before annihilating. We note that an x-ray line of several keV in energy, due to single-photon decays involving the top DM states, could provide an additional component to the diffuse x-ray background. The model is testable by proposed low-energy fixed target experiments.Comment: 27 pp, 19 figures; v2. minor clarification, added refs; v3. corrected observed rate of positron production, added new section responding to criticisms of arXiv:0904.1025; v4. corrected typos in eqs. (6) and (40
    • 

    corecore