49,893 research outputs found

    The physical and thermal properties of modified rotational molding grade silane cross-linked polyethylene compound

    Get PDF
    This study is aimed at investigating the physical and thermal properties of the modified rotational molding grade cross-linked polyethylene compound with respect to process ability. Rotational molding grade High Density Polyethylene (HDPE) was blended at various compositions with HDPE and Low Density Polyethylene (LDPE) using twin screw extruder. The melt index of the blends was studied according to ASTM D 1238. The blended compositions were chemically cross-linked with various amount of silane cross-linking agent using two roll-mill. Water curing was then undertaken at 100°C in water bath for 4 and 8 hours. Gel content was measured according to ASTM D 2765 to determine the degree of cross-linking. For thermal analysis, only samples crosslinked with 2.0 phr silane cross-linking agent were investigated on the Differential Scanning Calorimetry (DSC) according to ASTM D 3417. The thermal stability test of the silane Crosslinkable Polyethylene (XLPE) was performed by Thermogravimetric Analyzer (TGA) according to ASTM D 3850. Results on melt index (MI) indicated that the rotational molding grade HDPE blended with HDPE showed higher MI compared to that with LDPE thus improved process ability. The density of rotational molding grade HDPE with HDPE was slightly increased whereas that blended with LDPE was slightly decreased. Samples blended with HDPE, melting temperature, Tm, barely changed and degree of crystallinity, Xc, decreased with compositions. Samples with LDPE Tm and Xc decreased with compositions thus improved process ability. As the silane concentrations increased, the gel content after curing was also increased but independent of compositions. Longer curing time resulted in higher gel content. Thermal stability of the crosslinked HDPE was higher than the uncross-linked HDPE, thus silane cross-linking help to stabilize the blends

    Relativistic effect of spin and pseudospin symmetries

    Full text link
    Dirac Hamiltonian is scaled in the atomic units =m=1\hbar =m=1, which allows us to take the non-relativistic limit by setting the Compton wavelength 0% \lambda \rightarrow 0 . The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter λ\lambda. With λ\lambda transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with λ\lambda are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.Comment: 15 pages, 7 figures, accepted by PR
    corecore