652 research outputs found
Competition and symmetry in an artificial word learning task
Natural language involves competition. The sentences we choose to utter activate alternative sentences (those we chose not to utter), which hearers typically infer to be false. Hence, as a first approximation, the more alternatives a sentence activates, the more inferences it will trigger. But a closer look at the theory of competition shows that this is not quite true and that under specific circumstances, so-called symmetric alternatives cancel each other out. We present an artificial word learning experiment in which participants learn words that may enter into competition with one another. The results show that a mechanism of competition takes place, and that the subtle prediction that alternatives trigger inferences, and may stop triggering them after a point due to symmetry, is borne out. This study provides a minimal testing paradigm to reveal competition and some of its subtle characteristics in human languages and beyond
Observation of inter-Landau-level quantum coherence in semiconductor quantum wells
Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a
non-radiative coherence between the discrete Landau levels of an undoped
quantum well and study its dynamics. We observe quantum beats that reflect the
time evolution of the coherence between the two lowest Landau level
magnetoexcitons. We interpret our observations using a many-body theory and
find that the inter Landau level coherence decays with a new time constant,
substantially longer than the corresponding interband magnetoexciton dephasing
times. Our results indicate a new intraband excitation dynamics that cannot be
described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication
Ultrafast dynamics of coherences in the quantum Hall system
Using three-pulse four-wave-mixing optical spectroscopy, we study the
ultrafast dynamics of the quantum Hall system. We observe striking differences
as compared to an undoped system, where the 2D electron gas is absent. In
particular, we observe a large off-resonant signal with strong oscillations.
Using a microscopic theory, we show that these are due to many-particle
coherences created by interactions between photoexcited carriers and collective
excitations of the 2D electron gas. We extract quantitative information about
the dephasing and interference of these coherences.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
On the role of alternatives in the acquisition of simple and complex disjunctions in French and Japanese
International audienc
Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes
We consider generation of an electrical pulse by an optical pulse in the
``virtual excitation'' regime. The electronic system, which is any
electro-optic material including a quantum well structure biased by a dc
electric field, is assumed to be coupled to an external circuit. It is found
that the photon frequency is subject to an extra red shift in addition to the
usual self-phase modulation, whereas the photon number is conserved. The Joule
energy consumed in the external circuit is supplied only from the extra red
shift.Comment: 4 pages, 1 fugur
Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy
We present the first study of nonlinear optical third harmonic generation in
the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental
excitation in the near-infrared, the THG spectrum reveals a strongly resonant
response for photon energies near 0.7 eV. Polarization analysis reveals this
novel resonance to be only partially accounted for by three-photon excitation
to the optical charge-transfer exciton, and indicates that an even-parity
excitation at 2 eV, with a_1g symmetry, participates in the third harmonic
susceptibility.Comment: Requires RevTeX v4.0beta
Constructing Modular and Universal Single Molecule Tension Sensor Using Protein G to Study Mechano-sensitive Receptors
Recently a variety of molecular force sensors have been developed to study cellular forces acting through single mechano-sensitive receptors. A common strategy adopted is to attach ligand molecules on a surface through engineered molecular tethers which report cell-exerted tension on receptor-ligand bonds. This approach generally requires chemical conjugation of the ligand to the force reporting tether which can be time-consuming and labor-intensive. Moreover, ligand-tether conjugation can severely reduce the activity of protein ligands. To address this problem, we developed a Protein G (ProG)-based force sensor in which force-reporting tethers are conjugated to ProG instead of ligands. A recombinant ligand fused with IgG-Fc is conveniently assembled with the force sensor through ProG:Fc binding, therefore avoiding ligand conjugation and purification processes. Using this approach, we determined that molecular tension on E-cadherin is lower than dsDNA unzipping force (nominal value: 12 pN) during initial cadherin-mediated cell adhesion, followed by an escalation to forces higher than 43 pN (nominal value). This approach is highly modular and potentially universal as we demonstrate using two additional receptor-ligand interactions, P-selectin & PSGL-1 and Notch & DLL1
- âŠ