30 research outputs found

    Correlation between the Josephson coupling energy and the condensation energy in bilayer cuprate superconductors

    Full text link
    We review some previous studies concerning the intra-bilayer Josephson plasmons and present new ellipsometric data of the c-axis infrared response of almost optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8}. The c-axis conductivity of this compound exhibits the same kind of anomalies as that of underdoped YBa_{2}Cu_{3}O_{7-delta}. We analyze these anomalies in detail and show that they can be explained within a model involving the intra-bilayer Josephson effect and variations of the electric field inside the unit cell. The Josephson coupling energies of different bilayer compounds obtained from the optical data are compared with the condensation energies and it is shown that there is a reasonable agreement between the values of the two quantities. We argue that the Josephson coupling energy, as determined by the frequency of the intra-bilayer Josephson plasmon, represents a reasonable estimate of the change of the effective c-axis kinetic energy upon entering the superconducting state. It is further explained that this is not the case for the estimate based on the use of the simplest ``tight-binding'' sum rule. We discuss possible interpretations of the remarkable agreement between the Josephson coupling energies and the condensation energies. The most plausible interpretation is that the interlayer tunneling of the Cooper pairs provides the dominant contribution to the condensation energy of the bilayer compounds; in other words that the condensation energy of these compounds can be accounted for by the interlayer tunneling theory. We suggest an extension of this theory, which may also explain the high values of T_{c} in the single layer compounds Tl_{2}Ba_{2}CuO_{6} and HgBa_{2}CuO_{4}, and we make several experimentally verifiable predictions.Comment: 16 pages (including Tables) and 7 figures; accepted for publication in Physical Review

    Initiation of rrn transcription in chloroplasts of Euglena gracilis bacillaris

    Full text link
    The site of initiation of chloroplast rRNA synthesis was determined by Sl-mapping and by sequencing primary rRNA transcripts specifically labeled at their 5′-end. Transcription initiates at a single site 53 nucleotides upstream of the 5'-end of the mature 16S rRNA under all growth conditions examined. The initiation site is within a DNA sequence that is highly homologous to and probably derived from a tRNA gene-region located elsewhere in the chloroplast genome. A nearly identical sequence (102 of 103 nucleotides) is present near the replication origin. The near identity of the two sequences suggests a common mode for control of transcription of the rRNA genes and initiation of chloroplast DNA replication. The related sequence in the tRNA gene-region does not appear to serve as a transcript initiation site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46967/1/294_2004_Article_BF00521275.pd

    Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters.

    No full text
    The glnB gene from Bradyrhizobium japonicum, the endosymbiont of soybeans (Glycine max), was isolated and sequenced, and its expression was examined under various culture conditions and in soybean nodules. The B. japonicum glnB gene encodes a 12,237-dalton polypeptide that is highly homologous to the glnB gene products from Klebsiella pneumoniae and Escherichia coli. The gene is located directly upstream from glnA (encoding glutamine synthetase), a linkage not observed in enteric bacteria. The glnB gene from B. japonicum is expressed from tandem promoters, which are differentially regulated in response to the nitrogen status of the medium. Expression from the downstream promoter involves the B. japonicum ntrC gene product (NtrC) in both free-living and symbiotic cells. Thus, glnB, a putative nitrogen-regulatory gene in B. japonicum, is itself Ntr regulated, and NtrC is active in B. japonicum cells in their symbiotic state
    corecore