34 research outputs found

    First Steps in Eukaryogenesis: Physical phenomena in the origin and evolution of chromosome structure

    Get PDF
    Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of the cell from the last common ancestor. We shift our point of view from the evolution of cell morphology to the point of view of the genes. In particular, we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes

    Quantum random walks with history dependence

    Full text link
    We introduce a multi-coin discrete quantum random walk where the amplitude for a coin flip depends upon previous tosses. Although the corresponding classical random walk is unbiased, a bias can be introduced into the quantum walk by varying the history dependence. By mixing the biased random walk with an unbiased one, the direction of the bias can be reversed leading to a new quantum version of Parrondo's paradox.Comment: 8 pages, 6 figures, RevTe

    History of ESL Pronunciation Teaching

    Get PDF
    This chapter tells the story of over 150 years in the teaching of English as a second language (ESL) pronunciation. An analysis of historical resources may reveal a reliable history of pronunciation teaching. A consistent theme within the historical record is that prior to the second half of the nineteenth century pronunciation received little attention in L2 classrooms. Beginning in the 1850s and continuing for the next 30 years, early innovators such as Berlitz, Gouin, Marcel, and Predergast were rejecting and transitioning away from classical approaches. A change that resulted in pronunciation teaching\u27s considerably more consequential second wave was the formation in Paris during the period 1886-1889 of the International Phonetic Association. The 1950s-1970s coincide with a slow rise of attention to innovations in how to teach pronunciation. If we may speculate on the future of ESL pronunciation teaching, there is every reason to feel optimistic

    United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SEARCH FOR BACTERIAL WASTE AS A POSSIBLE SIGNATURE OF LIFE ON EUROPA

    No full text
    Abstract Observations of the icy Jovian moon Europa by the Galileo spacecraft served to stimulate conceptual planning for missions to Europa to search for signs of life in the volcanically-heated ocean presumed to underlie its thick icy surface (Horvath et al, 1997
    corecore