482 research outputs found
Fermi Large Area Telescope Detection of Two Very-High-Energy (E>100 GeV) Gamma-ray Photons from the z = 1.1 Blazar PKS 0426-380
We report the Fermi Large Area Telescope (LAT) detection of two
very-high-energy (VHE, E>100 GeV) gamma-ray photons from the directional
vicinity of the distant (redshift, z = 1.1) blazar PKS 0426-380. The null
hypothesis that both the 134 and 122 GeV photons originate from unrelated
sources can be rejected at the 5.5 sigma confidence level. We therefore claim
that at least one of the two VHE photons is securely associated with the
blazar, making PKS 0426-380 the most distant VHE emitter known to date. The
results are in agreement with the most recent Fermi-LAT constraints on the
Extragalactic Background Light (EBL) intensity, which imply a
horizon for 100 GeV photons. The LAT detection of the two VHE
gamma-rays coincided roughly with flaring states of the source, although we did
not find an exact correspondence between the VHE photon arrival times and the
flux maxima at lower gamma-ray energies. Modeling the gamma-ray continuum of
PKS 0426-380 with daily bins revealed a significant spectral hardening around
the time of detection of the first VHE event (LAT photon index \Gamma\
1.4) but on the other hand no pronounced spectral changes near the detection
time of the second one. This combination implies a rather complex variability
pattern of the source in gamma rays during the flaring epochs. An additional
flat component is possibly present above several tens of GeV in the
EBL-corrected Fermi-LAT spectrum accumulated over the ~8-month high state.Comment: 5 pages, 1 table, 4 figures. Accepted by ApJ
Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Data Handling Overview
The GLAST Balloon Flight Engineering Model (BFEM) represents one of 16 towers
that constitute the Large Area Telescope (LAT), a high-energy (>20 MeV)
gamma-ray pair-production telescope being built by an international partnership
of astrophysicists and particle physicists for a satellite launch in 2006. The
prototype tower consists of a Pb/Si pair-conversion tracker (TKR), a CsI
hodoscopic calorimeter (CAL), an anti-coincidence detector (ACD) and an
autonomous data acquisition system (DAQ). The self-triggering capabilities and
performance of the detector elements have been previously characterized using
positron, photon and hadron beams. External target scintillators were placed
above the instrument to act as sources of hadronic showers. This paper provides
a comprehensive description of the BFEM data-reduction process, from receipt of
the flight data from telemetry through event reconstruction and background
rejection cuts. The goals of the ground analysis presented here are to verify
the functioning of the instrument and to validate the reconstruction software
and the background-rejection scheme.Comment: 5 pages, 4 figures, to be published in IEEE Transacations on Nuclear
Science, August 200
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113
We report for the first time a gamma-ray and multi-wavelength nearly-periodic
oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope
(LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E
>100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance
of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated
oscillations observed in radio and optical fluxes, through data collected in
the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical
cycle appearing in ~10 years of data has a similar period, while the 15 GHz
oscillation is less regular than seen in the other bands. Further long-term
multi-wavelength monitoring of this blazar may discriminate among the possible
explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters.
Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S.
Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA
GSFC
Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models
We report on the observations of 14 dwarf spheroidal galaxies with the Fermi
Gamma-Ray Space Telescope taken during the first 11 months of survey mode
operations. The Fermi telescope provides a new opportunity to test particle
dark matter models through the expected gamma-ray emission produced by pair
annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf
spheroidal galaxies, the largest galactic substructures predicted by the cold
dark matter scenario, are attractive targets for such indirect searches for
dark matter because they are nearby and among the most extreme dark matter
dominated environments. No significant gamma-ray emission was detected above
100 MeV from the candidate dwarf galaxies. We determine upper limits to the
gamma-ray flux assuming both power-law spectra and representative spectra from
WIMP annihilation. The resulting integral flux above 100 MeV is constrained to
be at a level below around 10^-9 photons cm^-2 s^-1. Using recent stellar
kinematic data, the gamma-ray flux limits are combined with improved
determinations of the dark matter density profile in 8 of the 14 candidate
dwarfs to place limits on the pair annihilation cross-section of WIMPs in
several widely studied extensions of the standard model. With the present data,
we are able to rule out large parts of the parameter space where the thermal
relic density is below the observed cosmological dark matter density and WIMPs
(neutralinos here) are dominantly produced non-thermally, e.g. in models where
supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits
presented here also constrain some WIMP models proposed to explain the Fermi
and PAMELA e^+e^- data, including low-mass wino-like neutralinos and models
with TeV masses pair-annihilating into muon-antimuon pairs. (Abridged)Comment: 25 pages, 4 figures, accepted to ApJ, Corresponding authors: J.
Cohen-Tanugi, C. Farnier, T.E. Jeltema, E. Nuss, and S. Profum
The Spectral Energy Distribution of Fermi bright blazars
(Abridged) We have conducted a detailed investigation of the broad-band
spectral properties of the \gamma-ray selected blazars of the Fermi LAT Bright
AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray
spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray
data, collected within three months of the LBAS data taking period, we were
able to assemble high-quality and quasi-simultaneous Spectral Energy
Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is
similar to that of blazars discovered at other wavelengths, clearly showing, in
the usual Log - Log F representation, the typical broad-band
spectral signatures normally attributed to a combination of low-energy
synchrotron radiation followed by inverse Compton emission of one or more
components. We have used these SEDs to characterize the peak intensity of both
the low and the high-energy components. The results have been used to derive
empirical relationships that estimate the position of the two peaks from the
broad-band colors (i.e. the radio to optical and optical to X-ray spectral
slopes) and from the gamma-ray spectral index. Our data show that the
synchrotron peak frequency is positioned between 10 and
10 Hz in broad-lined FSRQs and between and Hz in
featureless BL Lacertae objects.We find that the gamma-ray spectral slope is
strongly correlated with the synchrotron peak energy and with the X-ray
spectral index, as expected at first order in synchrotron - inverse Compton
scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton
(SSC) models cannot explain most of our SEDs, especially in the case of FSRQs
and low energy peaked (LBL) BL Lacs. (...)Comment: 85 pages, 38 figures, submitted to Ap
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications
Dark matter (DM) particle annihilation or decay can produce monochromatic
-rays readily distinguishable from astrophysical sources. -ray
line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area
Space Telescope data from 20-300 GeV are presented using a selection based on
requirements for a -ray line analysis, and integrated over most of the
sky. We obtain -ray line flux upper limits in the range , and give corresponding DM annihilation
cross-section and decay lifetime limits. Theoretical implications are briefly
discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review
Letter
GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies
The detection of diffuse radio emission associated with clusters of galaxies
indicates populations of relativistic leptons infusing the intracluster medium.
Those electrons and positrons are either injected into and accelerated directly
in the intracluster medium, or produced as secondary pairs by cosmic-ray ions
scattering on ambient protons. Radiation mechanisms involving the energetic
leptons together with decay of neutral pions produced by hadronic interactions
have the potential to produce abundant GeV photons. Here, we report on the
search for GeV emission from clusters of galaxies using data collected by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from
August 2008 to February 2010. Thirty-three galaxy clusters have been selected
according to their proximity and high mass, X-ray flux and temperature, and
indications of non-thermal activity for this study. We report upper limits on
the photon flux in the range 0.2-100 GeV towards a sample of observed clusters
(typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and
spatially resolved models for the high-energy emission, and discuss how these
results constrain the characteristics of energetic leptons and hadrons, and
magnetic fields in the intracluster medium. The volume-averaged
relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in
several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C
The discovery of bright gamma-ray emission coincident with supernova remnant
(SNR) W51C is reported using the Large Area Telescope (LAT) on board the Fermi
Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10^4 yr) with
intense radio synchrotron emission in its shell and known to be interacting
with a molecular cloud. The gamma-ray emission is spatially extended, broadly
consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in
the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is
greater than 1x10^{36} erg/s given the distance constraint of D>5.5 kpc, which
makes this object one of the most luminous gamma-ray sources in our Galaxy. The
observed gamma-rays can be explained reasonably by a combination of efficient
acceleration of nuclear cosmic rays at supernova shocks and shock-cloud
interactions. The decay of neutral pi-mesons produced in hadronic collisions
provides a plausible explanation for the gamma-ray emission. The product of the
average gas density and the total energy content of the accelerated protons
amounts to 5x10^{51}(D/6kpc)^2 erg/cm^3. Electron density constraints from the
radio and X-ray bands render it difficult to explain the LAT signal as due to
inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds
new light on the origin of Galactic cosmic rays.Comment: 17 pages, 4 figures, 1 table. Accepted for ApJ Letters. Contact
authors: Y. Uchiyama, S. Funk., H. Tajima, T. Tanak
- …
