436 research outputs found
Fermi Large Area Telescope Detection of Two Very-High-Energy (E>100 GeV) Gamma-ray Photons from the z = 1.1 Blazar PKS 0426-380
We report the Fermi Large Area Telescope (LAT) detection of two
very-high-energy (VHE, E>100 GeV) gamma-ray photons from the directional
vicinity of the distant (redshift, z = 1.1) blazar PKS 0426-380. The null
hypothesis that both the 134 and 122 GeV photons originate from unrelated
sources can be rejected at the 5.5 sigma confidence level. We therefore claim
that at least one of the two VHE photons is securely associated with the
blazar, making PKS 0426-380 the most distant VHE emitter known to date. The
results are in agreement with the most recent Fermi-LAT constraints on the
Extragalactic Background Light (EBL) intensity, which imply a
horizon for 100 GeV photons. The LAT detection of the two VHE
gamma-rays coincided roughly with flaring states of the source, although we did
not find an exact correspondence between the VHE photon arrival times and the
flux maxima at lower gamma-ray energies. Modeling the gamma-ray continuum of
PKS 0426-380 with daily bins revealed a significant spectral hardening around
the time of detection of the first VHE event (LAT photon index \Gamma\
1.4) but on the other hand no pronounced spectral changes near the detection
time of the second one. This combination implies a rather complex variability
pattern of the source in gamma rays during the flaring epochs. An additional
flat component is possibly present above several tens of GeV in the
EBL-corrected Fermi-LAT spectrum accumulated over the ~8-month high state.Comment: 5 pages, 1 table, 4 figures. Accepted by ApJ
Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Data Handling Overview
The GLAST Balloon Flight Engineering Model (BFEM) represents one of 16 towers
that constitute the Large Area Telescope (LAT), a high-energy (>20 MeV)
gamma-ray pair-production telescope being built by an international partnership
of astrophysicists and particle physicists for a satellite launch in 2006. The
prototype tower consists of a Pb/Si pair-conversion tracker (TKR), a CsI
hodoscopic calorimeter (CAL), an anti-coincidence detector (ACD) and an
autonomous data acquisition system (DAQ). The self-triggering capabilities and
performance of the detector elements have been previously characterized using
positron, photon and hadron beams. External target scintillators were placed
above the instrument to act as sources of hadronic showers. This paper provides
a comprehensive description of the BFEM data-reduction process, from receipt of
the flight data from telemetry through event reconstruction and background
rejection cuts. The goals of the ground analysis presented here are to verify
the functioning of the instrument and to validate the reconstruction software
and the background-rejection scheme.Comment: 5 pages, 4 figures, to be published in IEEE Transacations on Nuclear
Science, August 200
Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT
Galaxy clusters are one of the prime sites to search for dark matter (DM)
annihilation signals. Depending on the substructure of the DM halo of a galaxy
cluster and the cross sections for DM annihilation channels, these signals
might be detectable by the latest generation of -ray telescopes. Here
we use three years of Fermi Large Area Telescope (LAT) data, which are the most
suitable for searching for very extended emission in the vicinity of nearby
Virgo galaxy cluster. Our analysis reveals statistically significant extended
emission which can be well characterized by a uniformly emitting disk profile
with a radius of 3\deg that moreover is offset from the cluster center. We
demonstrate that the significance of this extended emission strongly depends on
the adopted interstellar emission model (IEM) and is most likely an artifact of
our incomplete description of the IEM in this region. We also search for and
find new point source candidates in the region. We then derive conservative
upper limits on the velocity-averaged DM pair annihilation cross section from
Virgo. We take into account the potential -ray flux enhancement due to
DM sub-halos and its complex morphology as a merging cluster. For DM
annihilating into , assuming a conservative sub-halo model
setup, we find limits that are between 1 and 1.5 orders of magnitude above the
expectation from the thermal cross section for
. In a more optimistic scenario, we
exclude
for for the same channel. Finally, we
derive upper limits on the -ray-flux produced by hadronic cosmic-ray
interactions in the inter cluster medium. We find that the volume-averaged
cosmic-ray-to-thermal pressure ratio is less than .Comment: 15 pages, 11 figures, 4 tables, accepted for publication in ApJ;
corresponding authors: T. Jogler, S. Zimmer & A. Pinzk
Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113
We report for the first time a gamma-ray and multi-wavelength nearly-periodic
oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope
(LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E
>100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance
of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated
oscillations observed in radio and optical fluxes, through data collected in
the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical
cycle appearing in ~10 years of data has a similar period, while the 15 GHz
oscillation is less regular than seen in the other bands. Further long-term
multi-wavelength monitoring of this blazar may discriminate among the possible
explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters.
Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S.
Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA
GSFC
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications
Dark matter (DM) particle annihilation or decay can produce monochromatic
-rays readily distinguishable from astrophysical sources. -ray
line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area
Space Telescope data from 20-300 GeV are presented using a selection based on
requirements for a -ray line analysis, and integrated over most of the
sky. We obtain -ray line flux upper limits in the range , and give corresponding DM annihilation
cross-section and decay lifetime limits. Theoretical implications are briefly
discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review
Letter
Gamma-ray flares from the Crab Nebula
A young and energetic pulsar powers the well-known Crab Nebula. Here we
describe two separate gamma-ray (photon energy >100 MeV) flares from this
source detected by the Large Area Telescope on board the Fermi Gamma-ray Space
Telescope. The first flare occurred in February 2009 and lasted approximately
16 days. The second flare was detected in September 2010 and lasted
approximately 4 days. During these outbursts the gamma-ray flux from the nebula
increased by factors of four and six, respectively. The brevity of the flares
implies that the gamma rays were emitted via synchrotron radiation from PeV
(10^15 eV) electrons in a region smaller than 1.4 10^-2 pc. These are the
highest energy particles that can be associated with a discrete astronomical
source, and they pose challenges to particle acceleration theory.Comment: Contact authors: Rolf Buehler,[email protected]; Stefan
Funk,[email protected]; Roger Blandford,rdb3@stanford ; 16 pages,2
figure
Fermi Large Area Telescope observations of the Vela-X Pulsar Wind Nebula
We report on gamma-ray observations in the off-pulse window of the Vela
pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area
Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova
remnant, which contains several regions of non-thermal emission detected in the
radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT
lies within one of these regions, the 2*3 degrees area south of the pulsar
known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit
radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk.
The 200 MeV to 20 GeV LAT spectrum of this source is well described by a
power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux
above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first
errors represent the statistical error on the fit parameters, while the second
ones are the systematic uncertainties. Detailed morphological and spectral
analyses give strong constraints on the energetics and magnetic field of the
pulsar wind nebula (PWN) system and favor a scenario with two distinct electron
populations.Comment: 21 pages, 5 figures, accepted for publication in Astrophysical
Journa
Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes
The diffuse Galactic gamma-ray emission is produced by cosmic rays (CRs)
interacting with the interstellar gas and radiation field. Measurements by the
Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton
Gamma-Ray Observatory indicated excess gamma-ray emission > 1 GeV relative to
diffuse Galactic gamma-ray emission models consistent with directly measured CR
spectra (the so-called ``EGRET GeV excess''). The excess emission was observed
in all directions on the sky, and a variety of explanations have been proposed,
including beyond-the-Standard-Model scenarios like annihilating or decaying
dark matter. The Large Area Telescope (LAT) instrument on the Fermi Gamma-ray
Space Telescope has measured the diffuse gamma-ray emission with improved
sensitivity and resolution compared to EGRET. We report on LAT measurements of
the diffuse gamma-ray emission for energies 100 MeV to 10 GeV and Galactic
latitudes 10 deg. <= |b| <= 20 deg. The LAT spectrum for this region of the sky
is well reproduced by a diffuse Galactic gamma-ray emission model that is
consistent with local CR spectra and inconsistent with the EGRET GeV excess.Comment: 2 figures, 1 table, accepted by Physical Review Letters, available
online Dec. 18th, 200
- âŠ