162 research outputs found
Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance
Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller
Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: Atomistic level structural information
A wealth of atomistic information is contained within a self-assembled
quantum dot (QD), associated with its chemical composition and the growth
history. In the presence of quadrupolar nuclei, as in InGaAs QDs, much of this
is inherited to nuclear spins via the coupling between the strain within the
polar lattice and the electric quadrupole moments of the nuclei. Here, we
present a computational study of the recently introduced inverse spectra
nuclear magnetic resonance technique to assess its suitability for extracting
such structural information. We observe marked spectral differences between the
compound InAs and alloy InGaAs QDs. These are linked to the local biaxial and
shear strains, and the local bonding configurations. The cation-alloying plays
a crucial role especially for the arsenic nuclei. The isotopic line profiles
also largely differ among nuclear species: While the central transition of the
gallium isotopes have a narrow linewidth, those of arsenic and indium are much
broader and oppositely skewed with respect to each other. The statistical
distributions of electric field gradient (EFG) parameters of the nuclei within
the QD are analyzed. The consequences of various EFG axial orientation
characteristics are discussed. Finally, the possibility of suppressing the
first-order quadrupolar shifts is demonstrated by simply tilting the sample
with respect to the static magnetic field.Comment: Published version, 17 pages, 18 figure
Direct measurement of the hole-nuclear spin interaction in single quantum dots
We use photoluminescence spectroscopy of ''bright'' and ''dark'' exciton
states in single InP/GaInP quantum dots to measure hyperfine interaction of the
valence band hole with nuclear spins polarized along the sample growth axis.
The ratio of the hyperfine constants for the hole (C) and electron (A) is found
to be C/A~-0.11. In InP dots the contribution of spin 1/2 phosphorus nuclei to
the hole-nuclear interaction is weak, which enables us to determine
experimentally the value of C for spin 9/2 indium nuclei as C_In~-5 micro-eV.
This high value of C is in good agreement with recent theoretical predictions
and suggests that the hole-nuclear spin interaction has to be taken into
account when considering spin qubits based on holes.Comment: to be submitted to Phys Rev Let
Pumping of nuclear spins by the optical solid effect in a quantum dot
We demonstrate that efficient optical pumping of nuclear spins in
semiconductor quantum dots (QDs) can be achieved by resonant pumping of
optically "forbidden" transitions. This process corresponds to one-to-one
conversion of a photon absorbed by the dot into a polarized nuclear spin, which
also has potential for initialization of hole spin in QDs. Pumping via the
"forbidden" transition is a manifestation of the "optical solid effect", an
optical analogue of the effect previously observed in electron spin resonance
experiments in the solid state. We find that by employing this effect, nuclear
polarization of 65% can be achieved, the highest reported so far in optical
orientation studies in QDs. The efficiency of the spin pumping exceeds that
employing the allowed transition, which saturates due to the low probability of
electron-nuclear spin flip-flop.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
Next generation networks: 5G technology and its impact on communications development
This w ork outlines the rapid evolution of digital communication, highlighting the significant impact of 5G technology. It details 5G's
advantages over previous generation, such as higher speeds, lower latency, and the capacity to support a multitude o f devices and
services. The piece explains the technical underpinnings o f 5G, like Orthogonal Frequency Division Multiplexing (OFDM) and the use of
sm aller transmitters, which enhance network efficiency and flexibility. Additionally, it touches on the real-world applications of 5G across
various industries
Overhauser effect in individual InP/GaInP dots
Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a
wide range of external magnetic fields B_ext=0-5T by circularly polarized
optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T
and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of
the nuclear spin on the spin pumping efficiency. This feedback, produced by the
Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of
Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when
the Overhauser field cancels the external field. This counter-intuitive result
is shown to arise from the opposite contribution of the electron and hole
Zeeman splittings to the total exciton Zeeman energy
Optically tunable nuclear magnetic resonance in a single quantum dot
We report optically detected nuclear magnetic resonance (ODNMR) measurements on small ensembles of nuclear spins in single GaAs quantum dots. Using ODNMR we make direct measurements of the inhomogeneous Knight field from a photoexcited electron which acts on the nuclei in the dot. The resulting shifts of the NMR peak can be optically controlled by varying the electron occupancy and its spin orientation, and lead to strongly asymmetric line shapes at high optical excitation. The all-optical control of the NMR line shape will enable position-selective control of small groups of nuclear spins inside a dot
Full coherent control of nuclear spins in an optically pumped single quantum dot
Highly polarized nuclear spins within a semiconductor quantum dot (QD) induce
effective magnetic (Overhauser) fields of up to several Tesla acting on the
electron spin or up to a few hundred mT for the hole spin. Recently this has
been recognized as a resource for intrinsic control of QD-based spin quantum
bits. However, only static long-lived Overhauser fields could be used. Here we
demonstrate fast redirection on the microsecond time-scale of Overhauser fields
of the order of 0.5 T experienced by a single electron spin in an optically
pumped GaAs quantum dot. This has been achieved using full coherent control of
an ensemble of 10^3-10^4 optically polarized nuclear spins by sequences of
short radio-frequency (rf) pulses. These results open the way to a new class of
experiments using rf techniques to achieve highly-correlated nuclear spins in
quantum dots, such as adiabatic demagnetization in the rotating frame leading
to sub-micro K nuclear spin temperatures, rapid adiabatic passage, and spin
squeezing
- …