282 research outputs found
Kolmogorov turbulence in a random-force-driven Burgers equation: anomalous scaling and probability density functions
High-resolution numerical experiments, described in this work, show that
velocity fluctuations governed by the one-dimensional Burgers equation driven
by a white-in-time random noise with the spectrum exhibit a biscaling behavior: All moments of velocity differences
, while with for real
(Chekhlov and Yakhot, Phys. Rev. E {\bf 51}, R2739, 1995). The
probability density function, which is dominated by coherent shocks in the
interval , is with
.Comment: 12 pages, psfig macro, 4 figs in Postscript, accepted to Phys. Rev. E
as a Brief Communicatio
Turbulence without pressure
We develop exact field theoretic methods to treat turbulence when the effect
of pressure is negligible. We find explicit forms of certain probability
distributions, demonstrate that the breakdown of Galilean invariance is
responsible for intermittency and establish the operator product expansion. We
also indicate how the effects of pressure can be turned on perturbatively.Comment: 12 page
Direct Numerical Simulation Tests of Eddy Viscosity in Two Dimensions
Two-parametric eddy viscosity (TPEV) and other spectral characteristics of
two-dimensional (2D) turbulence in the energy transfer sub-range are calculated
from direct numerical simulation (DNS) with 512 resolution. The DNS-based
TPEV is compared with those calculated from the test field model (TFM) and from
the renormalization group (RG) theory. Very good agreement between all three
results is observed.Comment: 9 pages (RevTeX) and 5 figures, published in Phys. Fluids 6, 2548
(1994
The Non-local Kardar-Parisi-Zhang Equation With Spatially Correlated Noise
The effects of spatially correlated noise on a phenomenological equation
equivalent to a non-local version of the Kardar-Parisi-Zhang equation are
studied via the dynamic renormalization group (DRG) techniques. The correlated
noise coupled with the long ranged nature of interactions prove the existence
of different phases in different regimes, giving rise to a range of roughness
exponents defined by their corresponding critical dimensions. Finally
self-consistent mode analysis is employed to compare the non-KPZ exponents
obtained as a result of the long range -long range interactions with the DRG
results.Comment: Plain Latex, 10 pages, 2 figures in one ps fil
Measures to limit subsidence of underground oil pipeline in insular permafrost
In this paper optimal solutions to limit the subsidence of underground oil pipeline in insular permafrost are proposed
A note on Burgers' turbulence
In this note the Polyakov equation [Phys. Rev. E {\bf 52} (1995) 6183] for
the velocity-difference PDF, with the exciting force correlation function
is analyzed. Several solvable cases are
considered, which are in a good agreement with available numerical results.
Then it is shown how the method developed by A. Polyakov can be applied to
turbulence with short-scale-correlated forces, a situation considered in models
of self-organized criticality.Comment: 11 pages, Late
Aspects of the stochastic Burgers equation and their connection with turbulence
We present results for the 1 dimensional stochastically forced Burgers
equation when the spatial range of the forcing varies. As the range of forcing
moves from small scales to large scales, the system goes from a chaotic,
structureless state to a structured state dominated by shocks. This transition
takes place through an intermediate region where the system exhibits rich
multifractal behavior. This is mainly the region of interest to us. We only
mention in passing the hydrodynamic limit of forcing confined to large scales,
where much work has taken place since that of Polyakov.
In order to make the general framework clear, we give an introduction to
aspects of isotropic, homogeneous turbulence, a description of Kolmogorov
scaling, and, with the help of a simple model, an introduction to the language
of multifractality which is used to discuss intermittency corrections to
scaling.
We continue with a general discussion of the Burgers equation and forcing,
and some aspects of three dimensional turbulence where - because of the
mathematical analogy between equations derived from the Navier-Stokes and
Burgers equations - one can gain insight from the study of the simpler
stochastic Burgers equation. These aspects concern the connection of
dissipation rate intermittency exponents with those characterizing the
structure functions of the velocity field, and the dynamical behavior,
characterized by different time constants, of velocity structure functions. We
also show how the exponents characterizing the multifractal behavior of
velocity structure functions in the above mentioned transition region can
effectively be calculated in the case of the stochastic Burgers equation.Comment: 25 pages, 4 figure
Large eddy simulation of two-dimensional isotropic turbulence
Large eddy simulation (LES) of forced, homogeneous, isotropic,
two-dimensional (2D) turbulence in the energy transfer subrange is the subject
of this paper. A difficulty specific to this LES and its subgrid scale (SGS)
representation is in that the energy source resides in high wave number modes
excluded in simulations. Therefore, the SGS scheme in this case should assume
the function of the energy source. In addition, the controversial requirements
to ensure direct enstrophy transfer and inverse energy transfer make the
conventional scheme of positive and dissipative eddy viscosity inapplicable to
2D turbulence. It is shown that these requirements can be reconciled by
utilizing a two-parametric viscosity introduced by Kraichnan (1976) that
accounts for the energy and enstrophy exchange between the resolved and subgrid
scale modes in a way consistent with the dynamics of 2D turbulence; it is
negative on large scales, positive on small scales and complies with the basic
conservation laws for energy and enstrophy. Different implementations of the
two-parametric viscosity for LES of 2D turbulence were considered. It was found
that if kept constant, this viscosity results in unstable numerical scheme.
Therefore, another scheme was advanced in which the two-parametric viscosity
depends on the flow field. In addition, to extend simulations beyond the limits
imposed by the finiteness of computational domain, a large scale drag was
introduced. The resulting LES exhibited remarkable and fast convergence to the
solution obtained in the preceding direct numerical simulations (DNS) by
Chekhlov et al. (1994) while the flow parameters were in good agreement with
their DNS counterparts. Also, good agreement with the Kolmogorov theory was
found. This LES could be continued virtually indefinitely. Then, a simplifiedComment: 34 pages plain tex + 18 postscript figures separately, uses auxilary
djnlx.tex fil
Symmetries of the stochastic Burgers equation
All Lie symmetries of the Burgers equation driven by an external random force
are found. Besides the generalized Galilean transformations, this equation is
also invariant under the time reparametrizations. It is shown that the Gaussian
distribution of a pumping force is not invariant under the symmetries and
breaks them down leading to the nontrivial vacuum (instanton). Integration over
the volume of the symmetry groups provides the description of fluctuations
around the instanton and leads to an exactly solvable quantum mechanical
problem.Comment: 4 pages, REVTeX, replaced with published versio
Universality of Velocity Gradients in Forced Burgers Turbulence
It is demonstrated that Burgers turbulence subject to large-scale
white-noise-in-time random forcing has a universal power-law tail with exponent
-7/2 in the probability density function of negative velocity gradients, as
predicted by E, Khanin, Mazel and Sinai (1997, Phys. Rev. Lett. 78, 1904). A
particle and shock tracking numerical method gives about five decades of
scaling. Using a Lagrangian approach, the -7/2 law is related to the shape of
the unstable manifold associated to the global minimizer.Comment: 4 pages, 2 figures, RevTex4, published versio
- …