3 research outputs found

    Towards a systemic approach to CSR

    No full text

    A simple technique for an accurate shielding of the lungs during total body irradiation

    No full text
    Purpose: During total body irradiation (TBI), customized shielding blocks are positioned in front of the lungs to reduce radiation dose. The difficulty is to accurately position the blocks to cover the entire lungs. A new technique based on Computed Tomography (CT) simulation was developed to determine the exact position of lung blocks prior to treatment in order to decrease overall treatment time and reduce patient discomfort. Material/Methods: Patients were CT simulated and lungs were contoured using a treatment planning system. Anteroposterior/posteroanterior (AP/PA) fields were designed with MLC aperture conforming to lung contours. The fields were used to represent the extent of the lungs, which was subsequently marked on the patient’s skin. The lung blocks were positioned with their shadow matching the lungs’ marks. Their position was radiographically verified prior to the delivery of each beam. To evaluate the efficiency of this technique, the treatment session time and the number of repeated attempts to correctly position the shielding blocks was recorded for each beam. Exact treatment times for patients treated with the old technique were not available and were hence approximated based on previous experience. Results: We succeeded in positioning the shielding blocks from the first attempt in 10/12 beams. The position of the shielding blocks was adjusted only one time prior to treatment in 2/12 beams. These results are compared to an average of 3 attempts per beam for each patient using the conventional technique of trial and error. The average time of a treatment session was 29 min with a maximum of 41 min versus approximately 60 min in past treatments and a maximum of 120 min. Conclusion: This new technique succeeded in reducing the length of the overall treatment session of the conventional TBI procedure and hence reduced patient discomfort while ensuring accurate shielding of the lungs
    corecore