6 research outputs found

    Ground-breaking Exoplanet Science with the ANDES spectrograph at the ELT

    Full text link
    In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio during a planetary transit. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the ELT. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA's JWST and ESA's ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.Comment: 66 pages (103 with references) 20 figures. Submitted to Experimental Astronom

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF

    The ESO’s Extremely Large Telescope Working Groups

    No full text
    Since 2005 ESO has been working with its community and industry to develop an extremely large optical/infrared telescope. ESO's Extremely Large Telescope, or ELT for short, is a revolutionary ground-based telescope that will have a 39-metre main mirror and will be the largest visible and infrared light telescope in the world. To address specific topics that are needed for the science operations and calibrations of the telescope, thirteen specific working groups were created to coordinate the effort between ESO, the instrument consortia, and the wider community. We describe here the goals of these working groups as well as their achievements so far

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF
    International audienc

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    No full text

    The ESO’s Extremely Large Telescope Working Groups

    No full text
    Since 2005 ESO has been working with its community and industry to develop an extremely large optical/infrared telescope. ESO’s Extremely Large Telescope, or ELT for short, is a revolutionary ground-based telescope that will have a 39-metre main mirror and will be the largest visible and infrared light telescope in the world. To address specific topics that are needed for the science operations and calibrations of the telescope, thirteen specific working groups were created to coordinate the effort between ESO, the instrument consortia, and the wider community. We describe here the goals of these working groups as well as their achievements so far
    corecore