2 research outputs found
The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number of vertices
N. The analysis is carried out by mapping the history of the search process
onto an out-of-equilibrium (multi-dimensional) surface growth problem. The
growth exponent of the average running time is quantitatively predicted, in
agreement with simulations.Comment: 5 figure