2 research outputs found

    The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic

    Full text link
    We study the dynamics of a backtracking procedure capable of proving uncolourability of graphs, and calculate its average running time T for sparse random graphs, as a function of the average degree c and the number of vertices N. The analysis is carried out by mapping the history of the search process onto an out-of-equilibrium (multi-dimensional) surface growth problem. The growth exponent of the average running time is quantitatively predicted, in agreement with simulations.Comment: 5 figure
    corecore