2 research outputs found

    Effects of peptide on NK cell-mediated MHC I recognition

    No full text
    The inhibitory receptors for MHC class I have a central role in controlling natural killer (NK) cell activity. Soon after their discovery, it was found that these receptors have a degree of peptide selectivity. Such peptide selectivity has been demonstrated for all inhibitory killer cell immunoglobulin-like receptor (KIR) tested to date, certain activating KIR, and also members of the C-type lectin-like family of receptors. This selectivity is much broader than the peptide specificity of T cell receptors, with NK cell receptors recognizing peptide motifs, rather than individual peptides. Inhibitory receptors on NK cells can survey the peptide:MHC complexes expressed on the surface of target cells, therefore subsequent transduction of an inhibitory signal depends on the overall peptide content of these MHC class I complexes. Functionally, KIR-expressing NK cells have been shown to be unexpectedly sensitive to changes in the peptide content of MHC class I, as peptide:MHC class I complexes that weakly engage KIR can antagonize the inhibitory signals generated by engagement of stronger KIR-binding peptide:MHC class I complexes. This property provides KIR-expressing NK cells with the potential to recognize changes in the peptide:MHC class I repertoire, which may occur during viral infections and tumorigenesis. By contrast, in the presence of HLA class I leader peptides, virus-derived peptides can induce a synergistic inhibition of CD94:NKG2A-expressing NK cells through recruitment of CD94 in the absence of NKG2A. On the other hand, CD94:NKG2A-positive NK cells can be exquisitely sensitive to changes in the levels of MHC class I. Peptide antagonism and sensitivity to changes in MHC class I levels are properties that distinguish KIR and CD94:NKG2A. The subtle difference in the properties of NK cells expressing these receptors provides a rationale for having complementary inhibitory receptor systems for MHC class I

    STAT4-associated natural killer cell tolerance following liver transplantation

    No full text
    Objective: Natural killer (NK) cells are important mediators of liver inflammation in chronic liver disease. The aim of this study was to investigate why liver transplants (LTs) are not rejected by NK cells in the absence of human leukocyte antigen (HLA) matching, and to identify a tolerogenic NK cell phenotype.Design: phenotypic and functional analyses on NK cells from 54 LT recipients were performed, and comparisons made with healthy controls. Further investigation was performed using gene expression analysis and donor:recipient HLA typing.Results: NK cells from non-HCV LT recipients were hypofunctional, with reduced expression of NKp46 (p&lt;0.05) and NKp30 (p&lt;0.001), reduced cytotoxicity (p&lt;0.001) and interferon (IFN)-? secretion (p&lt;0.025). There was no segregation of this effect with HLA-C, and these functional changes were not observed in individuals with HCV. Microarray and RT-qPCR analysis demonstrated downregulation of STAT4 in NK cells from LT recipients (p&lt;0.0001). Changes in the expression levels of the transcription factors Helios (p=0.06) and Hobit (p=0.07), which control NKp46 and IFN? expression, respectively, were also detected. Hypofunctionality of NK cells was associated with impaired STAT4 phosphorylation and downregulation of the STAT4 target microRNA-155. Conversely in HCV-LT NK cell tolerance was reversed, consistent with the more aggressive outcome of LT for HCV.Conclusions: LT is associated with transcriptional and functional changes in NK cells, resulting in reduced activation. NK cell tolerance occurs upstream of major histocompatibility complex (MHC) class I mediated education, and is associated with deficient STAT4 phosphorylation. STAT4 therefore represents a potential therapeutic target to induce NK cell tolerance in liver disease.<br/
    corecore