41 research outputs found
Combined application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants defense mechanisms
Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification
Evolutionary characterization of lung adenocarcinoma morphology in TRACERx
Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.
Funding: Bill & Melinda Gates Foundation
On the performance of block transmission schemes in optical channels with a Gaussian profile
OFDM and its real valued version discrete multitone transmission (DMT) are popular schemes to compensate dispersion in direct detection optical systems. They employ an inverse fast Fourier transform (IFFT) at the transmitter and a fast Fourier transform (FFT) at the receiver, whereas the data symbols are processed block-wise. Block transmission combined with frequency domain equalization (FDE) has been recognized as a possible alternative to the DMT schemes, where the IFFT is moved from the transmitter to the receiver. This paper compares various bit loading enhanced DMT schemes such as asymmetrically clipped DMT and DC-biased DMT to PAM block transmission with FDE and to various single subcarrier FDE schemes. Moreover, a new approach termed asymmetrically clipped orthogonal PAM, is proposed in this work. Simulation results are presented for theoretical channels with a Gaussian low-pass profile. It will be shown that PAM-FDE performs best for this kind of channel, and n either bit loading enhanced DMT nor single subcarrier block transmission with FDE can offer a higher data rate at a given average optical power
Measuring skewness: We do not assume much
Since skewness plays a vital role in different engineering phenomena, its accurate measurement gains significance. Several measures have been taken to quantify the extent of skewness in distributions over the years, but each measure is subject to some serious limitations. In this regard, the present study aims to propose a new skewness measuring functional based on distribution function evaluated at mean with minimal assumptions and limitations. Four well-recognized properties for an appropriate measure of skewness were verified and demonstrated for the new measure. A comparison was made between the new measure and the conventional moment-based measure using both functionals over the range of distributions available in the literature. Furthermore, the robustness of the proposed measure against unusual data points was explored using influence function. The mathematical findings were verified through meticulous simulation studies; further, they were verified by real data sets derived from diverse fields of inquiries. As observed, compared to the classical moment-based measure, the proposed one passed all the checks with distinction. Given the computational simplicity, applicability in a more general environment, and preservation of c-ordering of distribution, the proposed measure may be regarded as an attractive addition to the family of skewness measures.Scopu
Link adaptation for LTE-A systems employing MMSE turbo equalization
Turbo equalization for multiple-input-multipleoutput (MIMO) wireless communication systems can achieve close-to-optimal performance over frequency selective channels at reasonable complexity. In this paper, a turbo equalizer for the Long Term Evolution-Advanced (LTE-A) uplink is proposed. Moreover, a novel approach for link adaption based on the extrinsic information transfer (EXIT) chart analysis of the turbo equalizer is discussed. Specifically, it is shown that the specific feedback parameters CQI, PMI, and RI used for spatial processing can be efficiently calculated. Numerical results are presented to demonstrate the performance enhancement achieved in realistic channel fading environments by the proposed link adaption scheme
Differential insecticide resistance in Bemisia tabaci (Hemiptera: Aleyrodidae) field populations in the Punjab Province of Pakistan
The cotton whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) has a propensity for developing high-level resistance to insecticides. Management of B. tabaci in cotton grown in Pakistan depends on insecticide use, resistance monitoring has become essential to minimize the development of resistance. In this study, resistance was monitored in adult whiteflies collected from cotton fields in the Bahawalpur, Faisalabad, Lodhran, Multan, and Vehari districts of the Punjab Province, Pakistan during 2017, 2018, and 2019. Resistance monitoring was carried out for two insect growth regulators (pyriproxyfen and buprofezin) four neonicotinoids acetamiprid, imidacloprid, thiamethoxam, thiacloprid, and the historically used pyrethroid, bifenthrin and organophosphate, chlorpyrifos. Results based on resistance ratio (RR) showed that moderate to high level of resistance against noenicitinoids insecticides have been observed in all four districts while whiteflies exhibited very low to low resistance to pyriproxyfen and buprofezin. The RRs for acetamiprid, imidacloprid, thiamethoxam, thiacloprid varied from 7.60 to 50.99, 19.32 to 65.72, 17.18 to 54.65 and 6.49–47.49-fold, respectively. Bifenthrin and chlorpyrifos showed very low toxicity against whiteflies in all districts except Faisalabad, with RRs of 12.28–50.56-fold and 7.94–26.24-fold, respectively. The results will facilitate ‘smart’ selection and guide rates of insecticide applications for whitefly management in cotton for effective whitefly management while also delaying the development of resistance. © 2022Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]