7 research outputs found

    The effects of the COVID-19 pandemic on dengue cases in Malaysia

    Get PDF
    BackgroundGlobally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia.MethodsThis study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase.ResultsDengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20–34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = −0.901) with COVID-19 cases during the COVID-19 pandemic.ConclusionThere was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases

    The Effects of Meteorological Factors on Dengue Cases in Malaysia

    No full text
    Dengue is a vector-borne disease affected by meteorological factors and is commonly recorded from ground stations. Data from ground station have limited spatial representation and accuracy, which can be overcome using satellite-based Earth Observation (EO) recordings instead. EO-based meteorological recordings can help to provide a better understanding of the correlations between meteorological variables and dengue cases. This paper aimed to first validate the satellite-based (EO) data of temperature, wind speed, and rainfall using ground station data. Subsequently, we aimed to determine if the spatially matched EO data correlated with dengue fever cases from 2011 to 2019 in Malaysia. EO data were spatially matched with the data from four ground stations located at states and districts in the central (Selangor, Petaling) and east coast (Kelantan, Kota Baharu) geographical regions of Peninsular Malaysia. Spearman’s rank-order correlation coefficient (ρ) was performed to examine the correlation between EO and ground station data. A cross-correlation analysis with an eight-week lag period was performed to examine the magnitude of correlation between EO data and dengue case across the three time periods (2011–2019, 2015–2019, 2011–2014). The highest correlation between the ground-based stations and corresponding EO data were reported for temperature (mean ρ = 0.779), followed by rainfall (mean ρ = 0.687) and wind speed (mean ρ = 0.639). Overall, positive correlations were observed between weekly dengue cases and rainfall for Selangor and Petaling across all time periods with significant correlations being observed for the period from 2011 to 2019 and 2015 to 2019. In addition, positive significant correlations were also observed between weekly dengue cases and temperature for Kelantan and Kota Baharu across all time periods, while negative significant correlations between weekly dengue cases and temperature were observed in Selangor and Petaling across all time periods. Overall negative correlations were observed between weekly dengue cases and wind speed in all areas from 2011 to 2019 and 2015 to 2019, with significant correlations being observed for the period from 2015 to 2019. EO-derived meteorological variables explained 48.2% of the variation in dengue cases in Selangor. Moderate to strong correlations were observed between meteorological variables recorded from EO data derived from satellites and ground stations, thereby justifying the use of EO data as a viable alternative to ground stations for recording meteorological variables. Both rainfall and temperature were found to be positively correlated with weekly dengue cases; however, wind speed was negatively correlated with dengue cases

    Effectiveness of the movement control measures during the third wave of COVID-19 in Malaysia

    No full text
    OBJECTIVES: Starting in March 2020, movement control measures were instituted across several phases in Malaysia to break the chain of transmission of coronavirus disease 2019 (COVID-19). In this study, we developed a susceptible-exposed-infected-recovered (SEIR) model to examine the effects of the various phases of movement control measures on disease transmissibility and the trend of cases during the third wave of the COVID-19 pandemic in Malaysia. METHODS: Three SEIR models were developed using the R programming software ODIN interface based on COVID-19 case data from September 1, 2020, to March 29, 2021. The models were validated and subsequently used to provide forecasts of daily cases from October 14, 2020, to March 29, 2021, based on 3 phases of movement control measures. RESULTS: We found that the reproduction rate (R-value) of COVID-19 decreased by 59.1% from an initial high of 2.2 during the nationwide Recovery Movement Control Order (RMCO) to 0.9 during the Movement Control Order (MCO) and Conditional MCO (CMCO) phases. In addition, the observed cumulative and daily highest numbers of cases were much lower than the forecasted cumulative and daily highest numbers of cases (by 64.4-98.9% and 68.8-99.8%, respectively). CONCLUSIONS: The movement control measures progressively reduced the R-value during the COVID-19 pandemic. In addition, more stringent movement control measures such as the MCO and CMCO were effective for further lowering the R-value and case numbers during the third wave of the COVID-19 pandemic in Malaysia due to their higher stringency than the nationwide RMCO

    Forecasting COVID-19 Case Trends Using SARIMA Models during the Third Wave of COVID-19 in Malaysia

    No full text
    With many countries experiencing a resurgence in COVID-19 cases, it is important to forecast disease trends to enable effective planning and implementation of control measures. This study aims to develop Seasonal Autoregressive Integrated Moving Average (SARIMA) models using 593 data points and smoothened case and covariate time-series data to generate a 28-day forecast of COVID-19 case trends during the third wave in Malaysia. SARIMA models were developed using COVID-19 case data sourced from the Ministry of Health Malaysia’s official website. Model training and validation was conducted from 22 January 2020 to 5 September 2021 using daily COVID-19 case data. The SARIMA model with the lowest root mean square error (RMSE), mean absolute percentage error (MAE) and Bayesian information criterion (BIC) was selected to generate forecasts from 6 September to 3 October 2021. The best SARIMA model with a RMSE = 73.374, MAE = 39.716 and BIC = 8.656 showed a downward trend of COVID-19 cases during the forecast period, wherein the observed daily cases were within the forecast range. The majority (89%) of the difference between the forecasted and observed values was well within a deviation range of 25%. Based on this work, we conclude that SARIMA models developed in this paper using 593 data points and smoothened data and sensitive covariates can generate accurate forecast of COVID-19 case trends

    The effects of super spreading events and movement control measures on the COVID-19 pandemic in Malaysia

    No full text
    This paper aims to develop an automated web application to generate validated daily effective reproduction numbers (Rt) which can be used to examine the effects of super-spreading events due to mass gatherings and the effectiveness of the various Movement Control Order (MCO) stringency levels on the outbreak progression of COVID-19 in Malaysia. The effective reproduction number, Rt, was estimated by adopting and modifying an Rt estimation algorithm using a validated distribution mean of 3.96 and standard deviation of 4.75 with a seven-day sliding window. The Rt values generated were validated using thea moving window SEIR model with a negative binomial likelihood fitted using methods from the Bayesian inferential framework. A Pearson’s correlation between the Rt values estimated by the algorithm and the SEIR model was r = 0.70, p < 0.001 and r = 0.81, p < 0.001 during the validation period The Rt increased to reach the highest values at 3.40 (95% CI 1.47, 6.14) and 1.72 (95% CI 1.54, 1.90) due to the Sri Petaling and Sabah electoral process during the second and third waves of COVID-19 respectively. The MCOs was able to reduce the Rt values by 63.2 to 77.1% and 37.0 to 47.0% during the second and third waves of COVID-19, respectively. Mass gathering events were one of the important drivers of the COVID-19 outbreak in Malaysia. However, COVID-19 transmission can be fuelled by noncompliance to Standard Operating Procedure, population mobility, ventilation and environmental factors

    COVID-19 in Malaysia:Descriptive Epidemiologic Characteristics of the First Wave

    No full text
    This study aimed to describe the characteristics of COVID-19 cases and close contacts during the first wave of COVID-19 in Malaysia (23 January 2020 to 26 February 2020), and to analyse the reasons why the outbreak did not continue to spread and lessons that can be learnt from this experience. Characteristics of the cases and close contacts, spatial spread, epidemiological link, and timeline of the cases were examined. An extended SEIR model was developed using several parameters such as the average number of contacts per day per case, the proportion of close contact traced per day and the mean daily rate at which infectious cases are isolated to determine the basic reproduction number (R0) and trajectory of cases. During the first wave, a total of 22 cases with 368 close contacts were traced, identified, tested, quarantine and isolated. Due to the effective and robust outbreak control measures put in place such as early case detection, active screening, extensive contact tracing, testing and prompt isolation/quarantine, the outbreak was successfully contained and controlled. The SEIR model estimated the R0 at 0.9 which further supports the decreasing disease dynamics and early termination of the outbreak. As a result, there was a 11-day gap (free of cases) between the first and second wave which indicates that the first wave was not linked to the second wave

    Prevalence and Determinants of Depressive Symptoms among Young Adolescents in Malaysia: A Cross-Sectional Study

    No full text
    Depression is the most common mental health problem affecting adolescents globally, wherein its increasing prevalence together with the negative health impacts escalates the need for further research in this area. This work determined the prevalence and factors associated with depressive symptoms among young adolescents in Malaysia. A total of 1350 adolescent aged 13 to 14 years in school across nine secondary schools in Selangor state, Malaysia participated in a cross-sectional study. Independent variables were examined using the using the Global School-Based Student Health Survey included age, gender, ethnicity, alcohol intake, smoking and illicit drug use, loneliness, bullying, parental marital status, income and supervision; and the Health Literacy and Stigma questionnaire examined mental health literacy levels. Depressive symptoms were the dependent variable which was examined using the Center for Epidemiology Study Depression (CESD) instrument. Prevalence of depressive symptoms among all participants was 19 % (95% CI [16.9, 21.2]), with a higher prevalence of depressive symptoms being reported among females 26.3% (95% CI [23.0, 29.8]) compared to males 11.7% (95% CI [9.4, 14.4]). Determinants namely females (AOR = 3.83; 95% CI [2.66, 5.52]), smoking (AOR = 6.16; 95% CI [3.15, 12.05]), been bullied (AOR = 3.70; 95% CI [2.51, 5.47]), felt lonely (AOR = 10.46; 95% CI [7.09, 15.42]) and having no parental supervision (AOR = 1.79; 95% CI [1.26, 2.53]) significantly increased the odds of depressive symptoms among all adolescents in the multivariate model. In addition, feeling lonely, being bullied and smoking were identified as common significant determinants of depressive symptoms across both genders. Feeling lonely (65% to 71%) and being bullied (10% to 19%) were ranked as the most important determinants of depressive symptoms among young adolescents. Tackling these factors would be instrumental in helping decision makers formulate depression prevention strategies and activities for adolescents
    corecore