19 research outputs found

    Human Arm simulation for interactive constrained environment design

    Get PDF
    During the conceptual and prototype design stage of an industrial product, it is crucial to take assembly/disassembly and maintenance operations in advance. A well-designed system should enable relatively easy access of operating manipulators in the constrained environment and reduce musculoskeletal disorder risks for those manual handling operations. Trajectory planning comes up as an important issue for those assembly and maintenance operations under a constrained environment, since it determines the accessibility and the other ergonomics issues, such as muscle effort and its related fatigue. In this paper, a customer-oriented interactive approach is proposed to partially solve ergonomic related issues encountered during the design stage under a constrained system for the operator's convenience. Based on a single objective optimization method, trajectory planning for different operators could be generated automatically. Meanwhile, a motion capture based method assists the operator to guide the trajectory planning interactively when either a local minimum is encountered within the single objective optimization or the operator prefers guiding the virtual human manually. Besides that, a physical engine is integrated into this approach to provide physically realistic simulation in real time manner, so that collision free path and related dynamic information could be computed to determine further muscle fatigue and accessibility of a product designComment: International Journal on Interactive Design and Manufacturing (IJIDeM) (2012) 1-12. arXiv admin note: substantial text overlap with arXiv:1012.432

    Fatigue evaluation in maintenance and assembly operations by digital human simulation

    Get PDF
    Virtual human techniques have been used a lot in industrial design in order to consider human factors and ergonomics as early as possible. The physical status (the physical capacity of virtual human) has been mostly treated as invariable in the current available human simulation tools, while indeed the physical capacity varies along time in an operation and the change of the physical capacity depends on the history of the work as well. Virtual Human Status is proposed in this paper in order to assess the difficulty of manual handling operations, especially from the physical perspective. The decrease of the physical capacity before and after an operation is used as an index to indicate the work difficulty. The reduction of physical strength is simulated in a theoretical approach on the basis of a fatigue model in which fatigue resistances of different muscle groups were regressed from 24 existing maximum endurance time (MET) models. A framework based on digital human modeling technique is established to realize the comparison of physical status. An assembly case in airplane assembly is simulated and analyzed under the framework. The endurance time and the decrease of the joint moment strengths are simulated. The experimental result in simulated operations under laboratory conditions confirms the feasibility of the theoretical approach

    On the connectivity of manipulator free workspace

    Get PDF
    International audienceThis article presents a new topological characterization of the free workspace of manip-ulators moving among obstacles. The free workspace is the set of positions and orienta-tions that the end-effector of the manipulator can reach, according to the joint limits of each of its links, and taking into account the obstacles of the environment. A classification of new connectivity properties of the free workspace is proposed, corresponding to different types of motions (point-to-point motions, following of continuous trajectories) that the manipulator can perform in the Cartesian space. For each property, a necessary and sufficient condition is given, which permits verification of the connectivity of the whole free workspace and leads to all the connected subspaces in it. These properties have been implemented in a Robotics C.A.D. system using octree representation of spaces. Some applications are presented, which show that this work is of primary interest for preparing off-line tasks, and is a new contribution to the problem of robotic cell layout design

    A distributed approach for access and visibility task with a manikin and a robot in a virtual reality environment

    No full text

    A Parallel Kinematic Concept Targeting at More Accurate Assembly of Aircraft Sections

    No full text
    corecore