6 research outputs found

    Local Magnetohydrodynamic Characteristics of the Plasma Stream generated by MPC

    Get PDF
    This paper investigates the spatial distributions of electrical current which flows inside the plasma stream generated by a magnetoplasma compressor (MPC). Two different modes of MPC operation with different gas supply scenarios have been applied in the experiments presented here. The first is the operation mode with a pulse injection of xenon into the interelectrode space, and the second is the operation mode with residual helium in the chamber and local injection of xenon directly into the compression zone. The maximum value of the electric current observed outside the MPC channel is 15 ÷ 20% of the total discharge current. Electric current vortices were discovered in the plasma stream. The amplitude of the current in the vortices reaches 50% of the total discharge current. The maximum EUV radiation power was measured in the mode of MPC operation with local xenon injection. Power in the wave range 12.2 ÷ 15.8 nm achieves up to 16 ÷ 18 kW

    Local Magnetohydrodynamic Characteristics of the Plasma Stream generated by MPC

    Get PDF
    This paper investigates the spatial distributions of electrical current which flows inside the plasma stream generated by a magnetoplasma compressor (MPC). Two different modes of MPC operation with different gas supply scenarios have been applied in the experiments presented here. The first is the operation mode with a pulse injection of xenon into the interelectrode space, and the second is the operation mode with residual helium in the chamber and local injection of xenon directly into the compression zone. The maximum value of the electric current observed outside the MPC channel is 15 ÷ 20% of the total discharge current. Electric current vortices were discovered in the plasma stream. The amplitude of the current in the vortices reaches 50% of the total discharge current. The maximum EUV radiation power was measured in the mode of MPC operation with local xenon injection. Power in the wave range 12.2 ÷ 15.8 nm achieves up to 16 ÷ 18 kW

    Some Aspects of Development and Histological Structure of the Visual System of Nothobranchius Guentheri

    No full text
    In this, work some aspects of the development of the visual system of Nothobranchius guentheri at the main stages of ontogenesis were described for the first time. It was possible to establish that the formation of the visual system occurs similarly to other representatives of the order Cyprinodontiformes, but significantly differs in terms of the individual stages of embryogenesis due to the presence of diapause. In the postembryonic period, there is a further increase in the size of the fish’s eyes and head, to the proportions characteristic of adult fish. The histological structure of the eye in adult N. guentheri practically does not differ from most teleost fish living in the same environmental conditions. The study of the structure of the retina showed the heterogeneity of the thickness of the temporal and nasal areas, which indicates the predominant role of peripheral vision. Morphoanatomical measurements of the body and eyes of N. guentheri showed that their correlation was conservative. This indicates an important role of the visual system for the survival of fish in natural conditions, both for the young and adults. In individuals of the older age group, a decrease in the amount of sodium (Na) and an increase in magnesium (Mg) and calcium (Ca) were found in the eye lens. Such changes in the elemental composition of the lens can be a sign of the initial stage of cataractogenesis and disturbances in the metabolism of lens fibers as a result of aging. This allows us to propose N. guentheri as a model for studying the structure, formation, and aging of the visual and nervous systems

    Decellularized Umbilical Cord as a Scaffold to Support Healing of Full-Thickness Wounds

    No full text
    The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.05% sodium dodecyl sulfate solution. The UC-scaffold was studied using morphological analysis methods. The composition of the UC-scaffold was studied using immunoblotting and Fourier transform infrared spectroscopy. The adhesion and proliferation of mesenchymal stromal cells were investigated using the LIVE/DEAD assay. The local reaction was determined by subcutaneous implantation in mice (n = 60). A model of a full-thickness skin wound in mice (n = 64) was used to assess the biological activity of the UC-scaffold. The proposed decellularization method showed its effectiveness in the umbilical cord, as it removed cells and retained a porous structure, type I and type IV collagen, TGF-β3, VEGF, and fibronectin in the ECM. The biodegradation of the UC-scaffold in the presence of collagenase, its stability during incubation in hyaluronidase solution, and its ability to swell by 1617 ± 120% were demonstrated. Subcutaneous scaffold implantation in mice showed gradual resorption of the product in vivo without the formation of a dense connective tissue capsule. Epithelialization of the wound occurred completely in contrast to the controls. All of these data suggest a potential for the use of the UC-scaffold
    corecore