8 research outputs found

    Pharmacological activities of chemically characterized essential oils from Haplophyllum tuberculatum (Forssk.)

    Get PDF
    The present work aimed at characterizing the phytochemical composition of Haplophyllum tuberculatum essential oil (HTEO), assessing its antifungal activity against various fungal strains, evaluating its insecticidal and repulsive properties against Callosobruchus maculatus, and determine its antioxidant capacity. To this end, Gas chromatography-mass spectrometry analysis detected 34 compounds in HTEO, with β-Caryophyllene being the major constituent (36.94%). HTEO demonstrated predominantly modest antifungal effects, however, it sustains notable activity, particularly against Aspergillus flavus, with an inhibition rate of 76.50% ± 0.60%. Minimum inhibitory concentrations ranged from 20.53 ± 5.08 to 76.26 ± 5.08 mg/mL, effectively inhibiting fungal growth. Furthermore, the antifungal, and antioxidant activities of HTEO were evaluated in silico against the proteins Aspergillus flavus FAD glucose dehydrogenase, and beta-1,4-endoglucanase from Aspergillus niger, NAD(P)H Oxidase. Moreover, HTEO displayed strong insecticidal activity against C. maculatus, with contact and inhalation tests yielding LC50 values of 30.66 and 40.28 μL/100g, respectively, after 24 h of exposure. A dose of 5 μL/100g significantly reduced oviposition (48.85%) and inhibited emergence (45.15%) compared to the control group. Additionally, HTEO exhibited a high total antioxidant capacity of 758.34 mg AAE/g EO, highlighting its antioxidant potential. Insilico results showed that the antifungal activity of HTEO is mostly attributed to γ-Cadinene and p-Cymen-7-ol, while antioxidant is attributed to α-Terpinyl isobutyrate displayed. Overall, HTEO offers a sustainable and environmentally friendly alternative to synthetic products used to manage diseases

    Chemical composition and potential antioxidant, anti-inflammatory, and analgesic efficacy of Cistus albidus L.

    Get PDF
    This study aims to assess the chemical composition of the aqueous extract of Cistus albidus L. leaves, as well as the potential of aqueous and hydroethanol extracts of the leaves and seeds as analgesic, anti-inflammatory, and antioxidant agents. The contents of phenolics and inorganic constituents were determined in C. albidus seeds and leaves; antioxidant capacity was assessed by 3 complementary and diverse tests. The carrageenan-induced paw edema technique was used to investigate the anti-inflammatory effect in vivo, and albumin denaturation to evaluate the anti-inflammatory effect in vitro. The acetic acid-induced contortion test, the tail-flick test, and the plantar test were used to assess the analgesic efficacy in vivo. Chemical analysis was performed by UPLC-MS/MS to quantify several phenolic compounds including catechin (1,627.6 mg kg–1), quercitrin (1,235.8 mg kg–1) and gallic acid (628. 2 mg kg–1). The ICP analysis revealed that potassium and calcium were the main inorganic components in the seeds and leaves of C. albidus. The hydroethanolic extract of the leaves showed the highest content of polyphenols/flavonoids, whereas the highest value of proanthocyanidins was detected in the aqueous extract of the seeds. All extracts showed potent antioxidant activity related to different phenolic compounds (quercetin, gallic acid, astragalin, catechin, and rutin). The aqueous extract of the leaves strongly inhibited paw edema (76.1 %) after 6 h of treatment and showed maximal inhibition of protein denaturation (191.0 µg mL–1 for 50 % inhibition) and analgesic activity in different nociceptive models. The presented data reveal that C. albidus extracts potentially show antioxidant, anti-inflammatory, and analgesic activities that could confirm the traditional use of this plant

    Children’s poisoning profile during the Covid-19 pandemic – Experience of Hassan II University Hospital in Fez, MOROCCO

    Full text link
    Introduction. —The Covid-19 pandemic and the containment situation, has generated enormous risks for children. Indeed, with the closure of schools, children, forced to stay at home, found themselves in permanent contact with dangerous products (drugs, disinfectants, plants) exposing them to accidental poisoning. Objective. —To describe the epidemiological, clinical and evolutionary aspects of the cases of pediatric intoxications in the UHC during the period of Covid-19, in order to assess the repercussions of this pandemic on the profile of these intoxications, in terms of number and incriminated products. Material and method. — This is a retrospective descriptive comparative study of intoxication cases admitted to the pediatric emergency department of the University Hospital of Fez spread over 2 years; from March 1, 2019 to February 2021; comparing intoxications admitted during the period of Covid-19 with the previous year. Results. — The emergency department recorded 132 cases of intoxication during the Covid-19 period (compared to 104 cases in 2019). Fez was always the most concerned city (66.21% against 69.02% in 2019). The cases emanated from the urban environment in (58.78%). The accidental circumstance was the most frequent, with an increase from 77.88% in 2019 to 82.02%. The rate of cases of envenomation that consulted was almost similar; children are more exposed to scorpion stings (73.52%) than snake bites. The analysis of incriminated products was marked by the increase of Caustics (20.38% in 2019 to 24.24% in 2020), and the decrease of pesticides (19.41% in 2019 to 13.63%). The symptomatology was dominated by neurological signs in 25.75% of cases, followed by respiratory disorders (18.18%). The evolution was favorable in 95.46%, and death occurred in 4.54% of cases compared to 3.84% in2019. The Covid-19 pandemic has changed the use of antidotes

    Chemical Characterization, Antioxidant, Insecticidal and Anti-Cholinesterase Activity of Essential Oils Extracted from <i>Cinnamomum verum</i> L.

    Full text link
    This study is aimed at evaluating the potential of the essential oil of Cinnamomum verum (EOCV) as an antioxidant, as an insecticide against Callosobruchus maculatus and for its anti-acetylcholinesterase activity. To this end, EOCV was extracted via hydrodistillation from this plant, and the identification of the phytochemicals was performed using gas chromatography–mass spectrometry (GC–MS). The antioxidant power was determined via in vitro tests, the insecticidal ability was tested via exposing C. maculatus to EOCV, and molecular docking was used to evaluate the anti-cholinesterase ability. The results of these GC–MS analyses show that the main composition of EOCV comprises Cinnamaldehyde dimethyl acetal (64.50%), cinnamicaldehyde (35.04%) and α-Copaene (0.11%). The insecticidal potential of the studied OEs, determined by using the inhalation test, and expressed as the concentration of EOs required for the death of 50% of the insects (LC50) and that required the death of 95% of adults (LC95) after 96 h of exposure, was 3.99 ± 0.40 and 14.91 ± 0.10 μL/L of air, respectively. In the contact test, 96 h of exposure gave an LC50 and LC95 of 3.17 ± 0.28 and 8.09 ± 0.05 μL/L of air, respectively. A comparison of the antioxidant activity of EOCV to that of ascorbic acid via DPPH free radical scavenging ability and Ferric Reducing Antioxidant Power (FRAP) revealed the IC50 and EC50 values of EOCV to be much higher than that obtained for ascorbic acid, and the molecular docking simulation revealed Coumarin, Piperonal, Cinnamaldehyde dimethyl and alpha-Copaene as possessing potential inhibitory activities against human acetylcholinesterase. However, further experimental validation is needed to enhance the prospects of this study

    <i>Solanum elaeagnifolium</i> Var. Obtusifolium (Dunal) Dunal: Antioxidant, Antibacterial, and Antifungal Activities of Polyphenol-Rich Extracts Chemically Characterized by Use of In Vitro and In Silico Approaches

    Full text link
    The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 μg/mL and 132.46 ± 11.73 μg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 μg AAE/and 890.1 ± 7.76 μg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains—most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between −5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase

    Phytochemistry and Biological Activities of Essential Oils from <i>Satureja calamintha</i> Nepeta

    Full text link
    Satureja calamintha nepeta (S. calamintha) has a history of successful use in the treatment of bacterial and fungal diseases. The present study was designed to investigate the chemical composition and antioxidant and antimicrobial activities of essential oils extracted from wild S. calamintha (EOSS) and domesticated S. calamintha (EOSD) for comparison purposes. Hydrodistillation was used to extract the essential oils (EOs), while GC/MS was used for chemical analysis. Antioxidant activity was studied using DPPH and FRAP assays. Antifungal activity was performed against Candida albicans, Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum), while antibacterial activity was tested against clinically resistant bacteria, namely Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Proteus mirabilis. By using ab=n in silico approach, the antioxidant and antimicrobial activities of the main compounds of EOSS and EOSD were also investigated. The yields obtained of EOSS and EOSD were 2.80% and 1.95%, respectively, with a dominance of eucalyptol, pulegone and rotundifolone. Concerning the antioxidant power, the IC50 values recorded by the use of the DPPH assay were in the range of 23.03 ± 4.30 and 24.09 ± 4.38 μg/mL for EOSS and EOSD, respectively, while by using the FRAP assay, the EC50 values were in the range of 55.38 ± 2.16 and 60.72 ± 7.71 μg/mL for EOSS and EOSD, respectively. Importantly, both essential oils of EOSS and EOSD exhibited good antibacterial activity against all studied bacteria; notably, the inhibition zone ranged from 14 ± 0.00 to 48.67 ± 1.15 mm and the MICs ranged from 0.37 ± 0.00 to 5.96 ± 0.00 µg/mL. Similarly, the studied EOs showed important antifungal activities compared to all the studied fungi, wherein the inhibition percentage ranged from 47.33 ± 1.15 to 89.18 ± 0.75%, while the MICs ranged from 0.18 ± 0.00 to 2.98 ± 0.00 µg/mL. The molecular docking results showed that piperitenone and pulegone strongly inhibited human acetylcholinesterase, whereas (+)-Isomenthone and piperitenone strongly inhibited S. aureus nucleoside diphosphate kinase, and E. coli beta-ketoacyl-[acyl carrier protein] synthase, respectively. The outcome of this article suggests that EOs of S. calamintha can be developed as alternative agents to manage drug-resistant phenomena and free radical issues

    Antioxidant, Anti-Proliferative Activity and Chemical Fingerprinting of Centaurea calcitrapa against Breast Cancer Cells and Molecular Docking of Caspase-3

    Full text link
    Centaurea calcitrapa has been intensively utilized in ethnomedicinal practices as a natural therapeutic recipe to cure various ailments. The current study aimed to chemically characterize ethanolic extract of C. calcitrapa (EECC) aerial parts (leaves and shoots) by use of gas chromatography-mass spectrometry analyses (GC-MS) and investigate its antioxidant and in vitro anticancer activities, elucidating the underlying molecular mechanism by use of flow cytometry-based fluorescence-activated cell sorting (FACS) and conducting in silico assessment of binding inhibitory activities of EECC major compounds docked to caspase-3. CG-MS profiling of EECC identified a total of 26 major flavonoids and polyphenolic compounds. DPPH and ABTS assays revealed that EECC exhibits potent antioxidant activity comparable to standard reducing agents. Results of the proliferation assay revealed that EECC exhibit potent, dose-dependent cytotoxic activities against triple-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cell models, with IC50 values of 1.3 &times; 102 and 8.7 &times; 101 &micro;g/mL, respectively. The observed cytotoxic effect was specific to studied cancer cells since EECC exhibited minimal (~&lt;10%) cytotoxicity against MCF-12, a normal breast cell line. FACS analysis employing annexin V-FITC/propidium iodide double labeling demonstrated that the observed anti-proliferative activity against MCF-7 and MDA-MB-231 was mediated via apoptotic as well as necrotic signaling transduction processes. The increase in fluorescence intensity associated with DCFH oxidation to DCF, as reported by FACS, indicated that apoptosis is caused by generation of ROS. The use of caspase-3-specific fluorogenic substrate revealed a dose-dependent elevation in caspase-3 substrate-cleavage activity, which further supports EECC-mediated apoptosis in MCF-7 cells. The major EECC compounds were examined for their inhibitory activity against caspase-3 receptor (1HD2) using molecular docking. Three compounds exhibited the highest glide score energy of &minus;5.156, &minus;4.691 and &minus;4.551 kcal/mol, respectively. Phenol, 2,6-dimethoxy established strong binding in caspase-3 receptor of hydrogenic type, with residue ARG 207 and of PI-PI stacking type with residue HIS 121. By contract, hexadecenoic acid showed 3 H-bond with the following residues: ASN 615, ASN 616a and THR 646. Taken together, the current findings reveal that EECC exhibits significant and specific cytotoxicity against breast cancer cells mediated by the generation of ROS and culminating into necrosis and apoptosis. Further investigations of the phytoconstituents-rich C. calcitrapa are therefore warranted against breast as well as other human cancer cell models
    corecore