25 research outputs found
Recommended from our members
Online Content : Physical and Structural Techniques Applied to Nucleic Acids
This chapter looks at the physical and structural techniques that can be applied to nucleic acids. The first few sections focus on spectroscopic techniques, nuclear magnetic resonance, mass spectrometry and diffraction techniques. The following sections explore cryogenic electron microscopy, optical microscopy, atomic force microscopy and electrophoresis. Chromatographic methods, centrifugation and light scattering techniques are also discussed. Finally, the chapter concludes with sections on thermodynamic analysis, molecular mechanics and dynamics, and QM/MM methods for modelling nucleic acids reactions
Computational DNA binding studies of (â)-epigallocatechin-3-gallate
<p>The catechin family of molecules that are present in the leaves of green tea has been under investigation since the antioxidant and anti-inflammatory properties of tea were discovered. Among multiple proposed therapeutic targets of these molecules, the direct interaction with nucleic acids has been proposed and experimentally observed but without clear knowledge about the potential binding modes between these ligands and DNA. One of these catechin structures, (â)-epigallocatechin gallate (EGCG), has three aromatic rings that could interact with double-stranded DNA via terminal base-pair stacking, intercalation, or through groove binding. Using enhanced sampling techniques and molecular dynamics simulations, we have found a stable complex between the EGCG ligand and DNA through intercalation of the trihydroxybenzoate aromatic ring and an ApC step. Moreover, we have calculated the absorption spectra of four possible binding modes and compared these to absorption profiles reported in the literature, and explored the possible DNA sequence preference for the EGCG ligand to bind. Our results suggest that an intercalative mode of interaction through the major groove is possible between the EGCG ligands and DNA with apparently very little DNA sequence selectivity.</p
Insight into G-DNA Structural Polymorphism and Folding from Sequence and Loop Connectivity through Free Energy Analysis
The lengths of G-tracts and their connecting loop sequences determine G-quadruplex folding and stability. Complete understanding of the sequenceâstructure relationships remains elusive. Here, single-loop G-quadruplexes were investigated using explicit solvent molecular dynamics (MD) simulations to characterize the effect of loop length, loop sequence, and G-tract length on the folding topologies and stability of G-quadruplexes. Eight loop types, including different variants of lateral, diagonal, and propeller loops, and six different loop sequences [d0 (i.e., no intervening residues in the loop), dT, dT<sub>2</sub>, dT<sub>3</sub>, dTTA, and dT<sub>4</sub>] were considered through MD simulation and free energy analysis. In most cases the free energetic estimates agree well with the experimental observations. The work also provides new insight into G-quadruplex folding and stability. This includes reporting the observed instability of the left propeller loop, which extends the rules for G-quadruplex folding. We also suggest a plausible explanation why human telomere sequences predominantly form hybrid-I and hybrid-II type structures in K<sup>+</sup> solution. Overall, our calculation results indicate that short loops generally are less stable than longer loops, and we hypothesize that the extreme stability of sequences with very short loops could possibly derive from the formation of parallel multimers. The results suggest that free energy differences, estimated from MD and free energy analysis with current force fields and simulation protocols, are able to complement experiment and to help dissect and explain loop sequence, loop length, and G-tract length and orientation influences on G-quadruplex structure
Exploring potentially alternative non-canonical DNA duplex structures through simulation
<p>Hopkins proposed an alternative and chirally distinct family of double-stranded DNA (dsDNA) models that have antiparallel chains with 5âČâ3âČ senses opposite to those of the right-handed WatsonâCrick (WC) family. Termed configuration II, this family of dsDNA models contains both right-handed (II-R) and left-handed (II-L) forms, with Z-DNA as an example of the latter. Relative interstrand binding energies for six DNA duplex models, two each of configuration I-R (standard WC canonical B-DNA), II-R, and II-L for the duplex d(CGCGAATTCGCG), have been estimated under identical conditions using MM-PBSA analysis from molecular dynamics trajectories using three different AMBER force fields. These simulations support the stereo chemical soundness of configuration II dsDNA forms. Recent force fields (Barcelona Supercomputing Center [BSC] [bsc1] and Olomouc 2015 [OL15]) successfully render stable II-L structures, whereas the previous force field, bsc0, generated stable II-R structures, although with an energy difference between II-R and II-L of âŒ30âkcal/mol.</p> <p>Communicated by Ramaswamy H. Sarma</p