960 research outputs found

    Aciculatin inhibits lipopolysaccharide-mediated inducible nitric oxide synthase and cyclooxygenase-2 expression via suppressing NF-κB and JNK/p38 MAPK activation pathways

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2<it>R</it>,4<it>S</it>,5<it>S</it>,6<it>R</it>)-tetrahydro-4,5-dihydroxy-6-methyl-2<it>H</it>-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4<it>H</it>-chromen-4-one), one of main components of <it>Chrysopogon aciculatis</it>, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS)-activated macrophages.</p> <p>Methods</p> <p>We used nitrate and prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) assays to examine inhibitory effect of aciculatin on nitric oxide (NO) and PGE<sub>2 </sub>levels in LPS-activated mouse RAW264.7 macrophages and further investigated the mechanisms of aciculatin suppressed LPS-mediated iNOS/COX-2 expression by western blot, RT-PCR, reporter gene assay and confocal microscope analysis.</p> <p>Results</p> <p>Aciculatin remarkably decreased the LPS (1 μg/mL)-induced mRNA and protein expression of iNOS and COX-2 as well as their downstream products, NO and PGE<sub>2 </sub>respectively, in a concentration-dependent manner (1-10 μM). Such inhibition was found, via immunoblot analyses, reporter gene assays, and confocal microscope observations that aciculatin not only acts through significant suppression of LPS-induced NF-κB activation, an effect highly correlated with its inhibitory effect on LPS-induced IκB kinase (IKK) activation, IκB degradation, NF-κB phosphorylation, nuclear translocation and binding of NF-κB to the κB motif of the iNOS and COX-2 promoters, but also suppressed phosphorylation of JNK/p38 mitogen-activated protein kinases (MAPKs).</p> <p>Conclusion</p> <p>Our results demonstrated that aciculatin exerts potent anti-inflammatory activity through its dual inhibitory effects on iNOS and COX-2 by regulating NF-κB and JNK/p38 MAPK pathways.</p

    Adaptive Phototransistor Sensor for Line Finding

    Get PDF
    AbstractLine finding is used by wheeled mobile robot for localization. A phototransistor array was designed to detect the line position relative to the robot. This sensor is composed of six phototransistors to detect the position of line on the floor relative to the wheeled mobile robot. Because the ambience may change with time and the floor colour may be different from one location to another, an adaptive scheme has been designed to find the line on the floor. This proposed scheme consists of three parts; modulation and demodulation, threshold recognition with k-means clustering, and line finding with fuzzy logic. Modulation and demodulation technique is used to tackle the problem of different ambience in the surrounding. K-means clustering is used to recognize the contrast in the colour of line and floor while fuzzy logic is used to find the line relative to the sensor. Experiments were conducted in a microcontroller and it was found out that this scheme can find the line on the floor with minimum error

    Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound

    Get PDF
    Feng-Yi Yang1, Ming-Che Teng1, Maggie Lu2, Hsiang-Fa Liang2, Yan-Ru Lee1, Chueh-Chuan Yen3, Muh-Lii Liang4,5, Tai-Tong Wong51Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 2Drug Delivery Laboratory, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 3Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, 4Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, 5Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, TaiwanBackground: High-dose tissue-specific delivery of therapeutic agents would be a valuable clinical strategy. We have previously shown that repeated transcranial focused ultrasound is able to increase the delivery of Evans blue significantly into brain tissue. The present study shows that repeated pulsed high-intensity focused ultrasound (HIFU) can be used to deliver high-dose atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes selectively to brain tumors.Methods: Firefly luciferase (Fluc)-labeled human GBM8401 glioma cells were implanted into NOD-scid mice. AP-1-conjugated liposomal doxorubicin or liposomal doxorubicin alone was administered followed by pulsed HIFU and the doxorubicin concentration in the treated brains quantified by fluorometer. Growth of the labeled glioma cells was monitored through noninvasive bioluminescence imaging and finally the brain tissue was histologically examined after sacrifice.Results: Compared with the control group, the animals treated with 5 mg/kg injections of AP-1 liposomal doxorubicin or untargeted liposomal doxorubicin followed by repeated pulsed HIFU not only showed significantly enhanced accumulation of drug at the sonicated tumor site but also a significantly elevated tumor-to-normal brain drug ratio (P &amp;lt; 0.001). Combining repeated pulsed HIFU with AP-1 liposomal doxorubicin or untargeted liposomal doxorubicin has similar antitumor effects.Conclusion: This study demonstrates that targeted or untargeted liposomal doxorubicin, followed by repeated pulsed HIFU, is a promising high-dose chemotherapy method that allows the desired brain tumor region to be targeted specifically.Keywords: repeated focused ultrasound, interleukin-4 receptor, blood-brain barrier, brain tumor, target drug deliver

    Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Get PDF
    In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1) in denbinobin-induced apoptosis in human lung adenocarcinoma (A549) cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN), two antioxidants (N-acetyl-L-cysteine (NAC) and glutathione (GSH)), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and an activator protein-1 (AP-1) inhibitor (curcumin). Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS) production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis

    Mobile text reader for people with low vision

    Get PDF
    People with low vision have visual acuity less than 6/18 and at least 3/60 in the better eye, with correction. The limited vision requires them to enhance their reading ability using magnifying glass or electronic screen magnifier. However, people with severe low vision have difficulty and suffer fatigue from using such assistive tool. This paper presents the development of a mobile text reader dedicated for people with low vision. The mobile text reader is developed as a mobile application that allows user to capture an image of texts and then translate the texts into audio format. One main contribution of this work compared to typical optical character recognition (OCR) engines or text-to-speech engines is the addition of image stitching feature. The image stitching feature can produce one single image from multiple poorly aligned images, and is integrated into the process of image acquisition. Either single or composite image is subsequently uploaded to a cloud-based OCR engine for robust character recognition. Eventually, a text-to-speech (TTS) synthesizer reproduces the word recognized in a natural-sounding speech. The whole series of computation is implemented as a mobile application to be run from a smartphone, allowing the visual impaired to access text information independently

    eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer

    Get PDF
    eIF4E binding protein 1 (4E-BP1), is critical for cap-dependent and cap-independent translation. This study is the first to demonstrate that 4E-BP1 expression correlates with colorectal cancer (CRC) progression. Compared to its expression in normal colon epithelial cells, 4E-BP1 was upregulated in CRC cell lines and was detected in patient tumor tissues. Furthermore, high 4E-BP1 expression was statistically associated with poor prognosis. Hypoxia has been considered as an obstacle for cancer therapeutics. Our previous data showed that YXM110, a cryptopleurine derivative, exhibited anticancer activity via 4E-BP1 depletion. Here, we investigated whether YXM110 could inhibit protein synthesis under hypoxia. 4E-BP1 expression was notably decreased by YXM110 under hypoxic conditions, implying that cap-independent translation could be suppressed by YXM110. Moreover, YXM110 repressed hypoxia-inducible factor 1α (HIF-1α) expression, which resulted in decreased downstream vascular endothelial growth factor (VEGF) expression. These observations highlight 4E-BP1 as a useful biomarker and therapeutic target, indicating that YXM110 could be a potent CRC therapeutic drug

    NPRL-Z-1, as a New Topoisomerase II Poison, Induces Cell Apoptosis and ROS Generation in Human Renal Carcinoma Cells

    Get PDF
    NPRL-Z-1 is a 4β-[(4″-benzamido)-amino]-4′-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)–DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma

    YC-1 [3-(5Ј-Hydroxymethyl-2Ј-furyl)-1-benzyl Indazole] Inhibits Neointima Formation in Balloon-Injured Rat Carotid through Suppression of Expressions and Activities of Matrix Metalloproteinases 2 and 9

    Get PDF
    ABSTRACT Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, and postrevascularization production of vascular smooth muscle cells may play key roles in development of arterial restenosis. We investigated the inhibitory effect of 3-(5Ј-hydroxymethyl-2Ј-furyl)-1-benzyl indazole (YC-1), a benzyl indazole compound, on MMP-2 and MMP-9 activity in a ballooninjury rat carotid artery model. Injury was induced by inserting a balloon catheter through the common carotid artery; after 14 days, histopathological analysis using immunostaining and Western blotting revealed significant restenosis with neointimal formation that was associated with enhanced protein expression of MMP-2 and MMP-9. However, these effects were dosedependently reduced by orally administered YC-1 (1-10 mg/ kg). In addition, gelatin zymography demonstrated that increased MMP-2 and MMP-9 activity was diminished by YC-1 treatment. On the other hand, YC-1 inhibited hydrolysis of the fluorogenic quenching substrate Mca-Pro-Leu-Gly-Leu-DpaAla-Arg-NH 2 by recombinant MMP-2 and MMP-9 with IC 50 values ϭ 2.07 and 8.20 M, respectively. Reverse transcription-polymerase chain reaction analysis of MMP-2 and MMP-9 mRNA revealed that YC-1 significantly inhibited mRNA levels of MMPs. Finally, for the YC-1 treatment group, we did not observe elevation of cGMP levels using enzyme-linked immunosorbent assay, suggesting that YC-1 inhibition of neointimal formation is not through a cGMP-elevating pathway. These data show YC-1 suppression of neointimal formation is dependent on its influence on MMP-2 and MMP-9 protein, mRNA expression, and activity, but not through a cGMP-elevating effect. YC-1 shows therapeutic potential for treatment of restenosis after angioplasty. During the past 20 years, one focus of cardiovascular pharmaceutical research has been the development of drugs that inhibit intimal hyperplasia. Despite many attempts, no clinical trial has proven that there is an effective pharmacological solution to the problem Matrix metalloproteinases (MMPs) are a family of structurally related zinc-endopeptidases that degrade components of extracellular matrix associated with vascular remodeling during vascular injury-induced neointima formatio

    Antitumor Agents 288: Design, Synthesis, SAR, and Biological Studies of Novel Heteroatom-Incorporated Antofine and Cryptopleurine Analogues as Potent and Selective Antitumor Agents

    Get PDF
    Novel heteroatom-incorporated antofine and cryptopleurine analogs were designed, synthesized, and tested against a panel of five cancer cell lines. Two new S-13-oxo analogs (11 and 16) exhibited potent cell growth inhibition in vitro (GI50: 9 nM and 20 nM). Interestingly, both compounds displayed improved selectivity among different cancer cell lines, in contrast to the natural products antofine and cryptopleurine. MOAa studies suggested that R-antofine promotes dysregulation of DNA replication during early S phase, while no similar effects were observed for 11 and 15 on corresponding replication initiation complexes. Compound 11 also showed greatly reduced cytotoxicity against normal cells and moderate antitumor activity against HT-29 human colorectal adenocarcinoma xenograft in mice without overt toxicity

    Design, Synthesis, Mechanisms of Action, and Toxicity of Novel 20( S )-Sulfonylamidine Derivatives of Camptothecin as Potent Antitumor Agents

    Get PDF
    Twelve novel 20-sulfonylamidine derivatives (9a–9l) of camptothecin (1) were synthesized via a Cu-catalyzed three-component reaction. They showed similar or superior cytotoxicity compared with that of irinotecan (3) against A-549, DU-145, KB, and multidrug-resistant (MDR) KBvin tumor cell lines. Compound 9a demonstrated better cytotoxicity against MDR cells compared with that of 1 and 3. Mechanistically, 9a induced significant DNA damage by selectively inhibiting Topoisomerase (Topo) I and activating the ATM/Chk related DNA damage-response pathway. In xenograft models, 9a demonstrated significant activity without overt adverse effects at 5 and 10 mg/kg, comparable to 3 at 100 mg/kg. Notably, 9a at 300 mg/kg (i.p.) showed no overt toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/kg, i.p.). Intact 9a inhibited Topo I activity in a cell-free assay in a manner similar to that of 1, confirming that 9a is a new class of Topo I inhibitor. 20-Sulfonylamidine 1-derivative 9a merits development as an anticancer clinical trial candidate
    corecore