41 research outputs found

    Energy-Efficient Joint Resource Allocation Algorithms for MEC-Enabled Emotional Computing in Urban Communities

    Get PDF
    This paper considers a mobile edge computing (MEC) system, where the MEC server first collects data from emotion sensors and then computes the emotion of each user. We give the formula of the emotional prediction accuracy. In order to improve the energy efficiency of the system, we propose resources allocation algorithms. We aim to minimize the total energy consumption of the MEC server and sensors by jointly optimizing the computing resources allocation and the data transmitting time. The formulated problem is a non-convex problem, which is very difficult to solve in general. However, we transform it into convex problems and apply convex optimization techniques to address it. The optimal solution is given in closed form. Simulation results show that the total energy consumption of our system can be effectively reduced by the proposed scheme compared with the benchmark

    Implementing Inclusive Education through Informatization: A Case Study on Promotion of MOOCs in Western China

    Get PDF
    This paper reports on the implementation of Promoting Massive Open Online Courses (MOOCs) in Western China, an initiative over a span of 10 years aimed at promoting the MOOC education model in the Western region of China, which plays a crucial role in inclusive education, breaking down geographical barriers and empowering individuals to pursue lifelong learning and realize their full potential. By 2022, this Initiative provided 10,000 customized MOOCs to Western universities, benefited over 2300 universities nationwide, engaged 39.3 million students, and trained 250,000 teachers. The Initiative encourages collaboration and knowledge sharing among educational institutions, promoting the development of localized online course content that aligns with the needs and interests of the local community. It also facilitates partnerships between educational institutions and industry stakeholders, fostering regional innovation and entrepreneurship. The analysis focuses on how the development of MOOCs for the Western areas started a journey of inclusive education, resulting in qualitative and quantitatively scaling education opportunities. By presenting the trajectory and outcomes of this Initiative, this paper demonstrates the positive impact of MOOCs in achieving inclusive education while also highlighting the challenges and difficulties encountered in the promotion process

    Improved measurement of the branching fraction of h_(c) → γη^(′)/η and search for h_(c) → γπ⁰

    No full text
    The processes hc→γP(P=η′, η, π0)) are studied with a sample of (27.12±0.14)×108 ψ(3686) events collected by the BESIII detector at the BEPCII collider. The branching fractions of hc→γη′ and hc→γη are measured to be (1.40±0.11±0.04±0.10)×10−3 and (3.77±0.55±0.13±0.26)×10−4, respectively, where the first uncertainties are statistical, the second systematic, and the third from the branching fraction of ψ(3686)→π0hc. The ratio Rhc=B(hc→γη)B(hc→γη′) is calculated to be (27.0±4.4±1.0)%. The measurements are consistent with the previous results with improved precision by a factor of 2. The results are valuable for gaining a deeper understanding of η−η′ mixing, and its manifestation within quantum chromodynamics. No significant signal is found for the decay hc→γπ0, and an upper limit is placed on its branching fraction of B(hc→γπ0)<5.0×10−5, at the 90\% confidence level

    Search for an axion-like particle in radiative J/ψ decays

    No full text
    We search for an axion-like particle (ALP) a through the process ψ(3686)→π+π−J/ψ, J/ψ→γa, a→γγ in a data sample of (2.71±0.01)×109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ→γa and the ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165≤ma≤2.84GeV/c2. The limits on B(J/ψ→γa) range from 8.3×10−8 to 1.8×10−6 over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165≤ma≤1.468GeV/c2

    Observation of the decay D_(s)⁺ → ωπ⁺η

    No full text
    Using 7.33 fb−1 of e+e− collision data collected by the BESIII detector at center-of-mass energies between 4.128 and 4.226~GeV, we observe for the first time the decay D±s→ωπ±η with a statistical significance of 7.6σ. The measured branching fraction of this decay is (0.54±0.12±0.04)%, where the first uncertainty is statistical and the second is systematic

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore