4,703 research outputs found

    Crossover from a pseudogap state to a superconducting state

    Full text link
    On the basis of our calculation we deduce that the particular electronic structure of cuprate superconductors confines Cooper pairs to be firstly formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It is also shown that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favors the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.Comment: 7 pages, 2 figure

    Impact of droplets on inclined flowing liquid films

    Get PDF
    The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analysed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are markedly more complex than those accompanying impact on initially quiescent films

    Construction, operation and control of a laboratory-scale Microgrid

    Get PDF
    Version of RecordPublishe

    Genetic algorithm-based RBF neural network load forecasting model

    Get PDF
    Version of RecordPublishe

    Competition between the BCS superconductivity and ferromagnetic spin fluctuations in MgCNi3_3

    Full text link
    The low temperature specific heat of the superconductor MgCNi3_3 and a non-superconductor MgC0.85_{0.85}Ni3_3 is investigated in detail. An additional contribution is observed from the data of MgCNi3_3 but absent in MgC0.85_{0.85}Ni3_3, which is demonstrated to be insensitive to the applied magnetic field even up to 12 Tesla. A detailed discussion on its origin is then presented. By subtracting this additional contribution, the zero field specific heat of MgCNi3_3 can be well described by the BCS theory with the gap ratio (Δ/kBTc\Delta/k_BT_c) determined by the previous tunneling measurements. The conventional s-wave pairing state is further proved by the magnetic field dependence of the specific heat at low temperatures and the behavior of the upper critical field.Comment: To appear in Physical Review B, 6 pages, 7 figure

    Analysis of chaotic mixing in plugs moving in meandering microchannels

    Get PDF
    Droplets moving in meandering microchannels can serve as a passive and robust strategy to produce chaotic mixing of species in droplet-based microfluidics. In this paper, a simplified theoretical model is proposed for plug-shaped droplets moving in meandering microchannels at Stokes flow. With this model to provide the velocity field, particle tracking, which requires a large computation time, is performed directly and easily without interpolation. With this convenience, a broad survey of the parameter space is carried out to investigate chaotic mixing in plugs, including the channel curvature, the Peclet number, the viscosity ratio, and the plug length. The results show that in order to achieve rapid mixing in plugs in meandering microchannels, a large curvature, a small Peclet number, a moderate viscosity ratio, and a moderate plug length are preferred. © 2011 American Physical Society
    corecore