5 research outputs found

    Learning Robust Representation for Joint Grading of Ophthalmic Diseases via Adaptive Curriculum and Feature Disentanglement

    Full text link
    Diabetic retinopathy (DR) and diabetic macular edema (DME) are leading causes of permanent blindness worldwide. Designing an automatic grading system with good generalization ability for DR and DME is vital in clinical practice. However, prior works either grade DR or DME independently, without considering internal correlations between them, or grade them jointly by shared feature representation, yet ignoring potential generalization issues caused by difficult samples and data bias. Aiming to address these problems, we propose a framework for joint grading with the dynamic difficulty-aware weighted loss (DAW) and the dual-stream disentangled learning architecture (DETACH). Inspired by curriculum learning, DAW learns from simple samples to difficult samples dynamically via measuring difficulty adaptively. DETACH separates features of grading tasks to avoid potential emphasis on the bias. With the addition of DAW and DETACH, the model learns robust disentangled feature representations to explore internal correlations between DR and DME and achieve better grading performance. Experiments on three benchmarks show the effectiveness and robustness of our framework under both the intra-dataset and cross-dataset tests.Comment: Accepted by MICCAI2

    Image Quality-aware Diagnosis via Meta-knowledge Co-embedding

    Full text link
    Medical images usually suffer from image degradation in clinical practice, leading to decreased performance of deep learning-based models. To resolve this problem, most previous works have focused on filtering out degradation-causing low-quality images while ignoring their potential value for models. Through effectively learning and leveraging the knowledge of degradations, models can better resist their adverse effects and avoid misdiagnosis. In this paper, we raise the problem of image quality-aware diagnosis, which aims to take advantage of low-quality images and image quality labels to achieve a more accurate and robust diagnosis. However, the diversity of degradations and superficially unrelated targets between image quality assessment and disease diagnosis makes it still quite challenging to effectively leverage quality labels to assist diagnosis. Thus, to tackle these issues, we propose a novel meta-knowledge co-embedding network, consisting of two subnets: Task Net and Meta Learner. Task Net constructs an explicit quality information utilization mechanism to enhance diagnosis via knowledge co-embedding features, while Meta Learner ensures the effectiveness and constrains the semantics of these features via meta-learning and joint-encoding masking. Superior performance on five datasets with four widely-used medical imaging modalities demonstrates the effectiveness and generalizability of our method.Comment: Accepted by CVPR 202

    Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains

    Full text link
    Diabetic Retinopathy (DR) is a common complication of diabetes and a leading cause of blindness worldwide. Early and accurate grading of its severity is crucial for disease management. Although deep learning has shown great potential for automated DR grading, its real-world deployment is still challenging due to distribution shifts among source and target domains, known as the domain generalization problem. Existing works have mainly attributed the performance degradation to limited domain shifts caused by simple visual discrepancies, which cannot handle complex real-world scenarios. Instead, we present preliminary evidence suggesting the existence of three-fold generalization issues: visual and degradation style shifts, diagnostic pattern diversity, and data imbalance. To tackle these issues, we propose a novel unified framework named Generalizable Diabetic Retinopathy Grading Network (GDRNet). GDRNet consists of three vital components: fundus visual-artifact augmentation (FundusAug), dynamic hybrid-supervised loss (DahLoss), and domain-class-aware re-balancing (DCR). FundusAug generates realistic augmented images via visual transformation and image degradation, while DahLoss jointly leverages pixel-level consistency and image-level semantics to capture the diverse diagnostic patterns and build generalizable feature representations. Moreover, DCR mitigates the data imbalance from a domain-class view and avoids undesired over-emphasis on rare domain-class pairs. Finally, we design a publicly available benchmark for fair evaluations. Extensive comparison experiments against advanced methods and exhaustive ablation studies demonstrate the effectiveness and generalization ability of GDRNet.Comment: Earyly Accepted by MICCAI 2023, the 26th International Conference on Medical Image Computing and Computer Assisted Interventio

    DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical Coherence Tomography Angiography Images

    Full text link
    Computer-assisted automatic analysis of diabetic retinopathy (DR) is of great importance in reducing the risks of vision loss and even blindness. Ultra-wide optical coherence tomography angiography (UW-OCTA) is a non-invasive and safe imaging modality in DR diagnosis system, but there is a lack of publicly available benchmarks for model development and evaluation. To promote further research and scientific benchmarking for diabetic retinopathy analysis using UW-OCTA images, we organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading. The scientific community responded positively to the challenge, with 11, 12, and 13 teams from geographically diverse institutes submitting different solutions in these three tasks, respectively. This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge. The obtained results from top algorithms indicate the importance of data augmentation, model architecture and ensemble of networks in improving the performance of deep learning models. These findings have the potential to enable new developments in diabetic retinopathy analysis. The challenge remains open for post-challenge registrations and submissions for benchmarking future methodology developments
    corecore