13,738 research outputs found

    Regularity lemmas in a Banach space setting

    Full text link
    Szemer\'edi's regularity lemma is a fundamental tool in extremal graph theory, theoretical computer science and combinatorial number theory. Lov\'asz and Szegedy [L. Lov\'asz and B. Szegedy: Szemer\'edi's Lemma for the analyst, Geometric and Functional Analysis 17 (2007), 252-270] gave a Hilbert space interpretation of the lemma and an interpretation in terms of compact- ness of the space of graph limits. In this paper we prove several compactness results in a Banach space setting, generalising results of Lov\'asz and Szegedy as well as a result of Borgs, Chayes, Cohn and Zhao [C. Borgs, J.T. Chayes, H. Cohn and Y. Zhao: An Lp theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, arXiv preprint arXiv:1401.2906 (2014)].Comment: 15 pages. The topological part has been substantially improved based on referees comments. To appear in European Journal of Combinatoric

    No directed fractal percolation in zero area

    Full text link
    We show that fractal (or "Mandelbrot") percolation in two dimensions produces a set containing no directed paths, when the set produced has zero area. This improves a similar result by the first author in the case of constant retention probabilities to the case of retention probabilities approaching 1

    Cardy's Formula for Certain Models of the Bond-Triangular Type

    Full text link
    We introduce and study a family of 2D percolation systems which are based on the bond percolation model of the triangular lattice. The system under study has local correlations, however, bonds separated by a few lattice spacings act independently of one another. By avoiding explicit use of microscopic paths, it is first established that the model possesses the typical attributes which are indicative of critical behavior in 2D percolation problems. Subsequently, the so called Cardy-Carleson functions are demonstrated to satisfy, in the continuum limit, Cardy's formula for crossing probabilities. This extends the results of S. Smirnov to a non-trivial class of critical 2D percolation systems.Comment: 49 pages, 7 figure

    Partition function zeros at first-order phase transitions: Pirogov-Sinai theory

    Full text link
    This paper is a continuation of our previous analysis [BBCKK] of partition functions zeros in models with first-order phase transitions and periodic boundary conditions. Here it is shown that the assumptions under which the results of [BBCKK] were established are satisfied by a large class of lattice models. These models are characterized by two basic properties: The existence of only a finite number of ground states and the availability of an appropriate contour representation. This setting includes, for instance, the Ising, Potts and Blume-Capel models at low temperatures. The combined results of [BBCKK] and the present paper provide complete control of the zeros of the partition function with periodic boundary conditions for all models in the above class.Comment: 46 pages, 2 figs; continuation of math-ph/0304007 and math-ph/0004003, to appear in J. Statist. Phys. (special issue dedicated to Elliott Lieb
    • …
    corecore